Skip to main content

Leptin Interaction with Brain Orexigenic and Anorexigenic Pathways

  • Chapter
  • First Online:
Leptin

Abstract

The adipocyte hormone leptin exerts anorexigenic effects by acting on brain circuits that regulate food intake and energy expenditure. Our understanding of the mechanisms underlying leptin’s anorexigenic actions in the brain is derived mainly from studies on rodents. Primary targets of leptin’s anorexigenic action are NPY/AGRP and POMC neurons in the hypothalamus and whose projections convey leptin signaling to regions of the brain that influence food intake, reward-seeking behavior, arousal, and reproduction. Leptin’s anorexigenic effects involves enhancement of satiety signals to the nucleus of the solitary tract in the hindbrain, which receives neuronal projections arising from leptin responsive neurons in the hypothalamus. Obesity results from impaired leptin signaling to the brain as a consequence of leptin resistance, genetic or metabolic leptin deficiency, mutations of the leptin receptor gene or genes that impair the function of downstream leptin circuits in the brain, attenuated leptin receptor signal transduction, and brain inflammatory mechanisms. fMRI imaging studies suggest that similar mechanisms of leptin action operate in the human brain as has been established in rodent models of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARC:

Arcuate nucleus

AGRP:

Agouti-related peptide

aMSH:

Alpha melanocyte stimulation hormone

CART:

Cocaine- and amphetamine-regulated transcript

CCK:

Cholecystokinin

CNS:

Central nervous system

CRH:

Corticotropin releasing hormone

CSF:

Cerebrospinal fluid

fMRI:

Functional magnetic resonance imaging

GABA:

Gamma amino butyric acid

JAK2:

Janus-activated kinase 2

Lep:

Leptin gene

LepR:

Leptin receptor

MAPK:

Mitogen-activated protein kinase

MCH:

Melanin concentrating hormone

MC4r:

Melanocortin 4 receptor

NMDR:

N-methyl-d-aspartate

NPY:

Neuropeptide Y

NTS:

Nucleus of the solitary tract

OXr:

Oxytocin receptor

PI3K:

Phosphatidylinositol 3-OH-kinase

POMC:

Proopiomelanocortin

PVN:

Paraventricular nucleus

STAT3:

Signal transducer and activator of transcription 3

Y1r:

Neuropeptide Y Y1 receptor

References

  1. Berthoud HR, Lenard NR, Shin AC. Food reward, hyperphagia, and obesity. Am J Physiol Regul Integr Comp Physiol. 2011;300(6):R1266–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404(6778):661–71.

    CAS  PubMed  Google Scholar 

  3. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci U S A. 1997;94(16):8878–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269(5223):543–6.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  CAS  PubMed  Google Scholar 

  6. Woods SC, Lotter EC, McKay LD, Porte Jr D. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979;282(5738):503–5.

    Article  CAS  PubMed  Google Scholar 

  7. Porte Jr D, Baskin DG, Schwartz MW. Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes. 2005;54(5):1264–76.

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz MW, Baskin DG. Leptin and the brain: then and now. J Clin Invest. 2013;123(6):2344–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Baskin DG, Figlewicz DP, Woods SC, Porte Jr D, Dorsa DM. Insulin in the brain. Annu Rev Physiol. 1987;49:335–47.

    Article  CAS  PubMed  Google Scholar 

  10. Baskin DG, Wilcox BJ, Figlewicz DP, Dorsa DM. Insulin and insulin-like growth factors in the CNS. Trends Neurosci. 1988;11(3):107–11.

    Article  CAS  PubMed  Google Scholar 

  11. Marks JL, Porte Jr D, Stahl WL, Baskin DG. Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology. 1990;127(6):3234–6.

    Article  CAS  PubMed  Google Scholar 

  12. Schwartz MW, Marks JL, Sipols AJ, Baskin DG, Woods SC, Kahn SE, et al. Central insulin administration reduces neuropeptide Y mRNA expression in the arcuate nucleus of food-deprived lean (Fa/Fa) but not obese (fa/fa) Zucker rats. Endocrinology. 1991;128(5):2645–7.

    Article  CAS  PubMed  Google Scholar 

  13. Schwartz MW, Sipols AJ, Grubin CE, Baskin DG. Differential effect of fasting on hypothalamic expression of genes encoding neuropeptide Y, galanin, and glutamic acid decarboxylase. Brain Res Bull. 1993;31(3–4):361–7.

    Article  CAS  PubMed  Google Scholar 

  14. Schwartz MW, Sipols AJ, Marks JL, Sanacora G, White JD, Scheurink A, et al. Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology. 1992;130(6):3608–16.

    CAS  PubMed  Google Scholar 

  15. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83(7):1263–71.

    Article  CAS  PubMed  Google Scholar 

  16. Lutz TA, Woods SC. Overview of animal models of obesity. Curr Protoc Pharmacol. ed SJ Enna. 2012; Chapter 5.

    Google Scholar 

  17. Ahima RS, Flier JS. Leptin. Annu Rev Physiol. 2000;62:413–37.

    Article  CAS  PubMed  Google Scholar 

  18. Munzberg H, Myers Jr MG. Molecular and anatomical determinants of central leptin resistance. Nat Neurosci. 2005;8(5):566–70.

    Article  PubMed  Google Scholar 

  19. Myers MG, Cowley MA, Munzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008;70:537–56.

    Article  CAS  PubMed  Google Scholar 

  20. Baskin DG, Breininger JF, Schwartz MW. Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes. 1999;48(4):828–33.

    Article  CAS  PubMed  Google Scholar 

  21. Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB. Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol. 1998;395(4):535–47.

    Article  CAS  PubMed  Google Scholar 

  22. Fei H, Okano HJ, Li C, Lee GH, Zhao C, Darnell R, et al. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc Natl Acad Sci U S A. 1997;94(13):7001–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Baskin DG, Schwartz MW, Seeley RJ, Woods SC, Porte Jr D, Breininger JF, et al. Leptin receptor long-form splice-variant protein expression in neuron cell bodies of the brain and co-localization with neuropeptide Y mRNA in the arcuate nucleus. J Histochem Cytochem. 1999;47(3):353–62.

    Article  CAS  PubMed  Google Scholar 

  24. Hakansson ML, Hulting AL, Meister B. Expression of leptin receptor mRNA in the hypothalamic arcuate nucleus—relationship with NPY neurones. Neuroreport. 1996;7(18):3087–92.

    Article  CAS  PubMed  Google Scholar 

  25. Baskin DG, Seeley RJ, Kuijper JL, Lok S, Weigle DS, Erickson JC, et al. Increased expression of mRNA for the long form of the leptin receptor in the hypothalamus is associated with leptin hypersensitivity and fasting. Diabetes. 1998;47(4):538–43.

    Article  CAS  PubMed  Google Scholar 

  26. Gamber KM, Huo L, Ha S, Hairston JE, Greeley S, Bjorbaek C. Over-expression of leptin receptors in hypothalamic POMC neurons increases susceptibility to diet-induced obesity. PLoS One. 2012;7(1):e30485.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hakansson ML, Brown H, Ghilardi N, Skoda RC, Meister B. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J Neurosci. 1998;18(1):559–72.

    CAS  PubMed  Google Scholar 

  28. Kim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J, et al. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat Neurosci. 2014;17(7):908–10. doi:10.1038/nn.3725.

    Article  CAS  PubMed  Google Scholar 

  29. Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab. 2014;19(2):293–301.

    Article  CAS  PubMed  Google Scholar 

  30. Hahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of AGRP and NPY in fasting-activated hypothalamic neurons. Nat Neurosci. 1998;1(4):271–2.

    Article  CAS  PubMed  Google Scholar 

  31. Bouret SG, Bates SH, Chen S, Myers Jr MG, Simerly RB. Distinct roles for specific leptin receptor signals in the development of hypothalamic feeding circuits. J Neurosci. 2012;32(4):1244–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Myers Jr MG. Outstanding Scientific Achievement Award Lecture 2010: deconstructing leptin: from signals to circuits. Diabetes. 2010;59(11):2708–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol. 2005;493(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  34. Banks AS, Davis SM, Bates SH, Myers Jr MG. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem. 2000;275(19):14563–72.

    Article  CAS  PubMed  Google Scholar 

  35. Morrison CD, Morton GJ, Niswender KD, Gelling RW, Schwartz MW. Leptin inhibits hypothalamic Npy and AGRP gene expression via a mechanism that requires phosphatidylinositol 3-OH-kinase signaling. Am J Physiol Endocrinol Metab. 2005;289(6):E1051–7.

    Article  CAS  PubMed  Google Scholar 

  36. Wang JH, Wang F, Yang MJ, Yu DF, Wu WN, Liu J, et al. Leptin regulated calcium channels of neuropeptide Y and proopiomelanocortin neurons by activation of different signal pathways. Neuroscience. 2008;156(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  37. Liu T, Kong D, Shah BP, Ye C, Koda S, Saunders A, et al. Fasting activation of AGRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron. 2012;73(3):511–22.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Blevins JE, Baskin DG. Hypothalamic-brainstem circuits controlling eating. Forum Nutr. 2010;63:133–40.

    Article  CAS  PubMed  Google Scholar 

  39. Elmquist JK, Ahima RS, Elias CF, Flier JS, Saper CB. Leptin activates distinct projections from the dorsomedial and ventromedial hypothalamic nuclei. Proc Natl Acad Sci U S A. 1998;95(2):741–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Elmquist JK, Ahima RS, Maratos-Flier E, Flier JS, Saper CB. Leptin activates neurons in ventrobasal hypothalamus and brainstem. Endocrinology. 1997;138(2):839–42.

    Article  CAS  PubMed  Google Scholar 

  41. Louis GW, Leinninger GM, Rhodes CJ, Myers Jr MG. Direct innervation and modulation of orexin neurons by lateral hypothalamic LepRb neurons. J Neurosci. 2010;30(34):11278–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Davis JF, Choi DL, Benoit SC. Insulin, leptin and reward. Trends Endocrinol Metab. 2010;21(2):68–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Davis JF, Choi DL, Schurdak JD, Fitzgerald MF, Clegg DJ, Lipton JW, et al. Leptin regulates energy balance and motivation through action at distinct neural circuits. Biol Psychiatry. 2011;69(7):668–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Irving AJ, Harvey J. Leptin regulation of hippocampal synaptic function in health and disease. Philos Trans R Soc Lond B Biol Sci. 2014;369(1633):20130155.

    Article  PubMed  Google Scholar 

  45. Ratra DV, Elias CF. Chemical identity of hypothalamic neurons engaged by leptin in reproductive control. J Chem Neuroanat. 2014;pii: S0891-0618(14)00041-6. doi: 10.1016/j.jchemneu.2014.05.005.

  46. Asterholm IW, Rutkowski JM, Fujikawa T, Cho YR, Fukuda M, Tao C, et al. Elevated resistin levels induce central leptin resistance and increased atherosclerotic progression in mice. Diabetologia. 2014;57(6):1209–18.

    Article  CAS  PubMed  Google Scholar 

  47. Gautron L, Lazarus M, Scott MM, Saper CB, Elmquist JK. Identifying the efferent projections of leptin-responsive neurons in the dorsomedial hypothalamus using a novel conditional tracing approach. J Comp Neurol. 2010;518(11):2090–108.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Kokkotou EG, Tritos NA, Mastaitis JW, Slieker L, Maratos-Flier E. Melanin-concentrating hormone receptor is a target of leptin action in the mouse brain. Endocrinology. 2001;142(2):680–6.

    Article  CAS  PubMed  Google Scholar 

  49. Grill HJ, Hayes MR. The nucleus tractus solitarius: a portal for visceral afferent signal processing, energy status assessment and integration of their combined effects on food intake. Int J Obes (Lond). 2009;33 Suppl 1:S11–5.

    Google Scholar 

  50. Maniscalco JW, Rinaman L. Systemic leptin dose-dependently increases STAT3 phosphorylation within hypothalamic and hindbrain nuclei. Am J Physiol Regul Integr Comp Physiol. 2014;306(8):R576–85.

    Article  CAS  PubMed  Google Scholar 

  51. Grill HJ, Hayes MR. Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab. 2012;16(3):296–309.

    Article  CAS  PubMed  Google Scholar 

  52. Morton GJ, Blevins JE, Williams DL, Niswender KD, Gelling RW, Rhodes CJ, et al. Leptin action in the forebrain regulates the hindbrain response to satiety signals. J Clin Invest. 2005;115(3):703–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Morton GJ, Niswender KD, Rhodes CJ, Myers Jr MG, Blevins JE, Baskin DG, et al. Arcuate nucleus-specific leptin receptor gene therapy attenuates the obesity phenotype of Koletsky (fa(k)/fa(k)) rats. Endocrinology. 2003;144(5):2016–24.

    Article  CAS  PubMed  Google Scholar 

  54. Schwartz GJ. Integrative capacity of the caudal brainstem in the control of food intake. Philos Trans R Soc Lond B Biol Sci. 2006;361(1471):1275–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Blevins JE, Schwartz MW, Baskin DG. Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am J Physiol Regul Integr Comp Physiol. 2004;287(1):R87–96.

    Article  CAS  PubMed  Google Scholar 

  56. Blevins JE, Eakin TJ, Murphy JA, Schwartz MW, Baskin DG. Oxytocin innervation of caudal brainstem nuclei activated by cholecystokinin. Brain Res. 2003;993(1–2):30–41.

    Article  CAS  PubMed  Google Scholar 

  57. Matarazzo V, Schaller F, Nedelec E, Benani A, Penicaud L, Muscatelli F, et al. Inactivation of Socs3 in the hypothalamus enhances the hindbrain response to endogenous satiety signals via oxytocin signaling. J Neurosci. 2012;32(48):17097–107.

    Article  CAS  PubMed  Google Scholar 

  58. Williams DL, Schwartz MW, Bastian LS, Blevins JE, Baskin DG. Immunocytochemistry and laser capture microdissection for real-time quantitative PCR identify hindbrain neurons activated by interaction between leptin and cholecystokinin. J Histochem Cytochem. 2008;56(3):285–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Garfield AS, Patterson C, Skora S, Gribble FM, Reimann F, Evans ML, et al. Neurochemical characterization of body weight-regulating leptin receptor neurons in the nucleus of the solitary tract. Endocrinology. 2012;153(10):4600–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Blevins JE, Morton GJ, Williams DL, Caldwell DW, Bastian LS, Wisse BE, et al. Forebrain melanocortin signaling enhances the hindbrain satiety response to CCK-8. Am J Physiol Regul Integr Comp Physiol. 2009;296(3):R476–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Blevins JE, Ho JM. Role of oxytocin signaling in the regulation of body weight. Rev Endocr Metab Disord. 2013;14(4):311–29.

    Article  CAS  PubMed  Google Scholar 

  62. Zheng H, Patterson LM, Rhodes CJ, Louis GW, Skibicka KP, Grill HJ, et al. A potential role for hypothalamomedullary POMC projections in leptin-induced suppression of food intake. Am J Physiol Regul Integr Comp Physiol. 2010;298(3):R720–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav. 2001;74(4–5):703–8.

    Article  CAS  PubMed  Google Scholar 

  64. Kong D, Tong Q, Ye C, Koda S, Fuller PM, Krashes MJ, et al. GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell. 2012;151(3):645–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Levin BE, Dunn-Meynell AA. Reduced central leptin sensitivity in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol. 2002;283(4):R941–8.

    PubMed  Google Scholar 

  66. Munzberg H, Bjornholm M, Bates SH, Myers Jr MG. Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci. 2005;62(6):642–52.

    Article  CAS  PubMed  Google Scholar 

  67. Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A, et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab. 2009;296(5):E1003–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Guyenet SJ, Nguyen HT, Hwang BH, Schwartz MW, Baskin DG, Thaler JP. High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes. Brain Res. 2013;1512:97–105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Velloso LA, Araujo EP, de Souza CT. Diet-induced inflammation of the hypothalamus in obesity. Neuroimmunomodulation. 2008;15(3):189–93.

    Article  CAS  PubMed  Google Scholar 

  71. Ignacio-Souza LM, Bombassaro B, Pascoal LB, Portovedo MA, Razolli DS, Coope A, et al. Defective regulation of the ubiquitin/proteasome system in the hypothalamus of obese male mice. Endocrinology. 2014;155(8):2831–44.

    Article  CAS  PubMed  Google Scholar 

  72. Banks WA. Blood-brain barrier and energy balance. Obesity. 2006;14 Suppl 5:234S–7S.

    Google Scholar 

  73. Banks WA. Role of the blood-brain barrier in the evolution of feeding and cognition. Ann N Y Acad Sci. 2012;1264:13–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Banks WA, Farr SA, Morley JE. The effects of high fat diets on the blood-brain barrier transport of leptin: failure or adaptation? Physiol Behav. 2006;88(3):244–8.

    Article  CAS  PubMed  Google Scholar 

  75. Gao Y, Tschop MH, Luquet S. Hypothalamic tanycytes: gatekeepers to metabolic control. Cell Metab. 2014;19(2):173–5.

    Article  CAS  PubMed  Google Scholar 

  76. Yi X, Yuan D, Farr SA, Banks WA, Poon CD, Kabanov AV. Pluronic modified leptin with increased systemic circulation, brain uptake and efficacy for treatment of obesity. J Control Release. 2014;pii: S0168-3659(14)00347-2. doi: 10.1016/j.jconrel.2014.05.044.

  77. Coppari R, Ichinose M, Lee CE, Pullen AE, Kenny CD, McGovern RA, et al. The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab. 2005;1(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  78. Berglund ED, Vianna CR, Donato Jr J, Kim MH, Chuang JC, Lee CE, et al. Direct leptin action on POMC neurons regulates glucose homeostasis and hepatic insulin sensitivity in mice. J Clin Invest. 2012;122(3):1000–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Huo L, Gamber K, Greeley S, Silva J, Huntoon N, Leng XH, et al. Leptin-dependent control of glucose balance and locomotor activity by POMC neurons. Cell Metab. 2009;9(6):537–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Fujikawa T, Berglund ED, Patel VR, Ramadori G, Vianna CR, Vong L, et al. Leptin engages a hypothalamic neurocircuitry to permit survival in the absence of insulin. Cell Metab. 2013;18(3):431–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Baicy K, London ED, Monterosso J, Wong ML, Delibasi T, Sharma A, et al. Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proc Natl Acad Sci U S A. 2007;104(46):18276–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Farooqi IS, Bullmore E, Keogh J, Gillard J, O’Rahilly S, Fletcher PC. Leptin regulates striatal regions and human eating behavior. Science. 2007;317(5843):1355.

    Article  CAS  PubMed  Google Scholar 

  83. Grosshans M, Vollmert C, Vollstadt-Klein S, Tost H, Leber S, Bach P, et al. Association of leptin with food cue-induced activation in human reward pathways. Arch Gen Psychiatry. 2012;69(5):529–37.

    Article  CAS  PubMed  Google Scholar 

  84. Schur EA, Kleinhans NM, Goldberg J, Buchwald D, Schwartz MW, Maravilla K. Activation in brain energy regulation and reward centers by food cues varies with choice of visual stimulus. Int J Obes. 2009;33(6):653–61.

    Article  CAS  Google Scholar 

  85. Wang B, Chandrasekera PC, Pippin JJ. Leptin- and leptin receptor-deficient rodent models: relevance for human type 2 diabetes. Curr Diabetes Rev. 2014;10(2):131–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Golden PL, Maccagnan TJ, Pardridge WM. Human blood-brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J Clin Invest. 1997;99(1):14–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Couce ME, Burguera B, Parisi JE, Jensen MD, Lloyd RV. Localization of leptin receptor in the human brain. Neuroendocrinology. 1997;66(3):145–50.

    Article  CAS  PubMed  Google Scholar 

  88. Burguera B, Couce ME, Long J, Lamsam J, Laakso K, Jensen MD, et al. The long form of the leptin receptor (OB-Rb) is widely expressed in the human brain. Neuroendocrinology. 2000;71(3):187–95.

    Article  CAS  PubMed  Google Scholar 

  89. Wardlaw SL, Burant CF, Klein S, Meece K, White A, Kasten T, et al. Continuous 24-hour leptin, proopiomelanocortin and amino acid measurements in human cerebrospinal fluid: correlations with plasma leptin, soluble leptin receptor and amino acid levels. J Clin Endocrinol Metab. 2014;99(7):2540–8.

    Article  CAS  PubMed  Google Scholar 

  90. Elias CF, Purohit D. Leptin signaling and circuits in puberty and fertility. Cell Mol Life Sci. 2013;70(5):841–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Frank S, Heni M, Moss A, von Schnurbein J, Fritsche A, Haring HU, et al. Leptin therapy in a congenital leptin-deficient patient leads to acute and long-term changes in homeostatic, reward, and food-related brain areas. J Clin Endocrinol Metab. 2011;96(8):E1283–7.

    Article  CAS  PubMed  Google Scholar 

  92. Farooqi IS, O’Rahilly S. Genetic factors in human obesity. Obesity Rev. 2007;8 Suppl 1:37–40.

    Google Scholar 

  93. Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S, et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest. 2005;115(12):3579–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Rosenbaum M, Sy M, Pavlovich K, Leibel RL, Hirsch J. Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest. 2008;118(7):2583–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Hinkle W, Cordell M, Leibel R, Rosenbaum M, Hirsch J. Effects of reduced weight maintenance and leptin repletion on functional connectivity of the hypothalamus in obese humans. PLoS One. 2013;8(3):e59114.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Aotani D, Ebihara K, Sawamoto N, Kusakabe T, Aizawa-Abe M, Kataoka S, et al. Functional magnetic resonance imaging analysis of food-related brain activity in patients with lipodystrophy undergoing leptin replacement therapy. J Clin Endocrinol Metab. 2012;97(10):3663–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements 

This material is based upon work supported by the Research and Development Service, Veterans Health Administration, Department of Veterans Affairs, and the Cellular and Molecular Imaging Core of the Diabetes Research Center at the University of Washington and supported by National Institutes of Health (NIH) grant P30DK017047. Dr. Baskin is the recipient of a VA Senior Research Career Scientist award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis G. Baskin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baskin, D.G. (2015). Leptin Interaction with Brain Orexigenic and Anorexigenic Pathways. In: Dagogo-Jack, MD, S. (eds) Leptin. Springer, Cham. https://doi.org/10.1007/978-3-319-09915-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09915-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09914-9

  • Online ISBN: 978-3-319-09915-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics