Skip to main content

Leptin, the Autonomic Nervous System, and Hypertension

  • Chapter
  • First Online:
Leptin

Abstract

Although the importance of leptin in regulating energy balance and adiposity has been recognized since its discovery 20 years ago, there is considerable evidence that leptin may also play a key role in linking obesity with increased sympathetic nervous system (SNS) activity and hypertension. Leptin crosses the blood–brain barrier and activates multiple brain centers that control SNS activity and blood pressure (BP) mainly by activation of central nervous system (CNS) melanocortins. Deletion of leptin receptors specifically in proopiomelanocortin (POMC) neurons abolishes leptin’s effects to increase BP and renal sympathetic nervous system (SNS) activity, a key mediator of long-term BP regulation, but does not greatly attenuate leptin’s effects on appetite or energy expenditure. Also, genetic deficiency or pharmacological blockade of melanocortin 4 receptors (MC4R) in the CNS prevents leptin-induced increases in renal SNS activity and BP as well as obesity-induced hypertension. The crosstalk between peripheral signals (e.g. leptin) and activation of CNS pathways (e.g. the POMC-MC4R axis) in key hypothalamic and brainstem areas that regulate energy balance, SNS activity, and BP represents a potential target for treating obesity and its metabolic and cardiovascular consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yach D, Stuckler D, Brownell KD. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med. 2006;12:62–6.

    Article  CAS  PubMed  Google Scholar 

  2. Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999-2004. JAMA. 2006;295:1549–55.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson SE, Whitaker RC. Prevalence of obesity among US preschool children in different racial and ethnic groups. Arch Pediatr Adolesc Med. 2009;163:344–8.

    Article  PubMed  Google Scholar 

  4. Guyton AC. The surprising kidney-fluid mechanism for pressure control: its infinite gain! Hypertension. 1990;16:425–30.

    Article  Google Scholar 

  5. Hall JE, Crook ED, Jones DW, Wofford MR, Dubbert PM. Mechanisms of obesity-associated cardiovascular and renal disease. Am J Med Sci. 2002;324:127–37.

    Article  PubMed  Google Scholar 

  6. Hall JE. The kidney, hypertension, and obesity. Hypertension. 2003;41:625–33.

    Article  PubMed  Google Scholar 

  7. Davy KP, Hall JE. Obesity and hypertension: two epidemics or one? Am J Physiol Regul Integr Comp Physiol. 2004;286:R803–13.

    Article  CAS  PubMed  Google Scholar 

  8. Davy KP, Orr JS. Sympathetic nervous system behavior in human obesity. Neurosci Biobehav Rev. 2009;33:116–24.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Vaz M, Jennings G, Turner A, Cox H, Lambert G, Esler M. Regional sympathetic nervous activity and oxygen consumption in obese normotensive subjects. Circulation. 1997;18:3423–9.

    Article  Google Scholar 

  10. Armitage JA, Burke SL, Prior LJ, Barzel B, Eikelis N, Lim K, Head GA. Rapid onset of renal sympathetic nerve activation in rabbits fed a high-fat diet. Hypertension. 2012;60:163–71.

    Article  CAS  PubMed  Google Scholar 

  11. Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, Munusamy S, Smith G, Stec DE. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem. 2010;285:17271–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Straznicky NE, Eikelis N, Lambert EA, Esler MD. Mediators of sympathetic activation in metabolic syndrome obesity. Curr Hypertens Rep. 2008;10:440–7.

    Article  CAS  PubMed  Google Scholar 

  13. Esler M, Straznicky N, Eikelis N, Masuo K, Lambert G, Lambert E. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension. 2006;48:787–96.

    Article  CAS  PubMed  Google Scholar 

  14. Wofford MR, Anderson DC, Brown CA, Jones DW, Miller ME, Hall JE. Antihypertensive effect of alpha and beta adrenergic blockade in obese and lean hypertensive subjects. Am J Hypertens. 2001;14:694–8.

    Article  CAS  PubMed  Google Scholar 

  15. Kassab S, Kato T, Wilkins FC, Chen R, Hall JE, Granger JP. Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension. 1995;25:893–7.

    Article  CAS  PubMed  Google Scholar 

  16. Hering D, Marusic P, Walton AS, Lambert EA, Krum H, Narkiewicz K, Lambert GW, Esler MD, Schlaich MP. Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension. Hypertension 2014;64:118–24.

    Google Scholar 

  17. Rumantir MS, Vaz M, Jennings GL, Collier G, Kaye DM, Seals DR, Wiesner GH, Brunner-La Rocca HP, Esler MD. Neural mechanisms in human obesity-related hypertension. J Hypertens. 1999;17:1125–33.

    Article  CAS  PubMed  Google Scholar 

  18. da Silva AA, do Carmo JM, Dubinion J, Hall JE. The role of the sympathetic nervous system in obesity-related hypertension. Curr Hypertens Rep. 2009;11:206–11.

    Article  PubMed Central  PubMed  Google Scholar 

  19. da Silva AA, do Carmo JM, Wang Z, Hall JE. The brain melanocortin system, sympathetic control, and obesity hypertension. Physiology (Bethesda). 2014;29:196–202.

    Google Scholar 

  20. Snitker S, Pratley RE, Nicolson M, Tataranni PA, Ravussin E. Relationship between muscle sympathetic nerve activity and plasma leptin concentration. Obes Res. 1997;5:338–40.

    Article  CAS  PubMed  Google Scholar 

  21. Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest. 1997;100:270–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Dunbar JC, Hu Y, Lu H. Intracerebroventricular leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats. Diabetes. 1997;46:2040–3.

    Article  CAS  PubMed  Google Scholar 

  23. Machleidt F, Simon P, Krapalis AF, Hallschmid M, Lehnert H, Sayk F. Experimental hyperleptinemia acutely increases vasoconstrictory sympathetic nerve activity in healthy humans. J Clin Endocrinol Metab. 2013;98:E491–6.

    Article  CAS  PubMed  Google Scholar 

  24. Frühbeck G. 460. Pivotal role of nitric oxide in the control of blood pressure after leptin administration. Diabetes. 1999;48:903–8.

    Article  PubMed  Google Scholar 

  25. Shek EW, Brands MW, Hall JE. Chronic leptin infusion increases arterial pressure. Hypertension. 1998;31:409–14.

    Article  CAS  PubMed  Google Scholar 

  26. Aizawa-Abe M, Ogawa Y, Masuzaki H, Ebihara K, Satoh N, Iwai H, Matsuoka N, Hayashi T, Hosoda K, Inoue G, Yoshimasa Y, Nakao K. Pathophysiological role of leptin in obesity-related hypertension. J Clin Invest. 2000;105:1243–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Carlyle M, Jones OB, Kuo JJ, Hall JE. Chronic cardiovascular and renal actions of leptin-role of adrenergic activity. Hypertension. 2002;39:496–501.

    Article  CAS  PubMed  Google Scholar 

  28. Zelissen PM, Stenlof K, Lean ME, Fogteloo J, Keulen ET, Wilding J, Finer N, Rössner S, Lawrence E, Fletcher C, McCamish M. Effect of three treatment schedules of recombinant methionyl human leptin on body weight in obese adults: a randomized, placebo-controlled trial. Diabetes Obes Metab. 2005;7:755–61.

    Article  CAS  PubMed  Google Scholar 

  29. Brook RD, Bard RL, Bodary PF, Eitzman DT, Rajagopalan S, Sun Y, Depaoli AM. Blood pressure and vascular effects of leptin in humans. Metab Syndr Relat Disord. 2007;5:270–4.

    Article  CAS  PubMed  Google Scholar 

  30. Lim K, Burke SL, Head GA. Obesity-related hypertension and the role of insulin and leptin in high-fat-fed rabbits. Hypertension. 2013;61:628–34.

    Article  CAS  PubMed  Google Scholar 

  31. Mark AL, Shafer RA, Correia ML, Morgan DA, Sigmund CD, Haynes WG. Contrasting blood pressure effects of obesity in leptin deficient ob/ob mice and agouti yellow obese mice. J Hypertens. 1999;17:1949–53.

    Article  CAS  PubMed  Google Scholar 

  32. do Carmo JM, Bassi M, da Silva AA, Hall JE. Control of cardiovascular, metabolic and respiratory functions during prolonged obesity in leptin-deficient and diet-induced obese mice. Hypertension. 2008;15:109.

    Google Scholar 

  33. Farooqi S, O’Rahilly S. Genetics of obesity in humans. Endocr Rev. 2006;27:710–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab. 1999;10:3686–95.

    Article  Google Scholar 

  35. Mark AL. Selective leptin resistance revisited. Am J Physiol Regul Integr Comp Physiol. 2013;305:R566–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kuo JJ, Jones OB, Hall JE. Inhibition of NO synthesis enhances chronic cardiovascular and renal actions of leptin. Hypertension. 2001;37:670–6.

    Article  CAS  PubMed  Google Scholar 

  37. Cohen P, Connie Z, Cai X, Montez JM, Rohani SC, Feinstein P, Mombaerts P, Friedman JM. Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest. 2001;108:1113–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404:661–71.

    CAS  PubMed  Google Scholar 

  39. Rahmouni K, Morgan DA. Hypothalamic arcuate nucleus mediates the sympathetic and arterial pressure responses to leptin. Hypertension. 2007;49:647–52.

    Article  CAS  PubMed  Google Scholar 

  40. Harlan SM, Morgan DA, Agassandian K, Guo DF, Cassell MD, Sigmund CD, Mark AL, Rahmouni K. Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circ Res. 2011;108:808–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS, Couceyro PR, Kuhar MJ, Saper CB, Elmquist JK. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron. 1998;21:1375–85.

    Article  CAS  PubMed  Google Scholar 

  42. Elmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav. 2001;74:703–8.

    Article  CAS  PubMed  Google Scholar 

  43. do Carmo JM, da Silva AA, Cai Z, Lin S, Dubinion JH, Hall JE. Control of blood pressure, appetite, and glucose by leptin in mice lacking leptin receptors in proopiomelanocortin neurons. Hypertension. 2011;57:918–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Mark AL, Agassandian K, Morgan DA, Liu X, Cassell MD, Rahmouni K. Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney. Hypertension. 2009;53:375–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Smith PM, Ferguson AV. Cardiovascular actions of leptin in the subfornical organ are abolished by diet-induced obesity. J Neuroendocrinol. 2012;24:504–10.

    Article  CAS  PubMed  Google Scholar 

  46. Young CN, Morgan DA, Butler SD, Mark AL, Davisson RL. The brain subfornical organ mediates leptin-induced increases in renal sympathetic activity but not its metabolic effects. Hypertension. 2013;61:737–44.

    Article  CAS  PubMed  Google Scholar 

  47. Mark AL, Correia ML, Rahmouni K, Haynes WG. Selective leptin resistance: a new concept in leptin physiology with cardiovascular implications. J Hypertens. 2002;20:1245–50.

    Article  CAS  PubMed  Google Scholar 

  48. Dubinion JH, da Silva AA, Hall JE. Chronic blood pressure and appetite responses to central leptin infusion in rats fed a high fat diet. J Hypertens. 2011;29:758–62.

    Article  CAS  PubMed  Google Scholar 

  49. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides. 1996;17:305–11.

    Article  CAS  PubMed  Google Scholar 

  50. Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, Lynn RB, Zhang PL, Sinha MK, Considine RV. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet. 1996;348:159–61.

    Article  CAS  PubMed  Google Scholar 

  51. Münzberg H, Myers Jr MG. Molecular and anatomical determinants of central leptin resistance. Nat Neurosci. 2005;8:566–70.

    Article  PubMed  Google Scholar 

  52. Kalil GZ, Haynes WG. Sympathetic nervous system in obesity-related hypertension: mechanisms and clinical implications. Hypertens Res. 2012;35:4–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Correia ML, Haynes WG, Rahmouni K, Morgan DA, Sivitz WI, Mark AL. The concept of selective leptin resistance: evidence from agouti yellow obese mice. Diabetes. 2002;51:439–42.

    Article  CAS  PubMed  Google Scholar 

  54. Rahmouni K, Fath MA, Seo S, Thedens DR, Berry CJ, Weiss R, Nishimura DY, Sheffield VC. Leptin resistance contributes to obesity and hypertension in mouse models of Bardet-Biedl syndrome. J Clin Invest. 2008;118:1458–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Rahmouni K, Morgan DA, Morgan GM, Mark AL, Haynes WG. Role of selective leptin resistance in diet-induced obesity hypertension. Diabetes. 2005;54:2012–8.

    Article  CAS  PubMed  Google Scholar 

  56. Prior LJ, Eikelis N, Armitage JA, Davern PJ, Burke SL, Montani JP, Barzel B, Head GA. Exposure to a high-fat diet alters leptin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension. 2010;55:862–8.

    Article  CAS  PubMed  Google Scholar 

  57. Ghilardi N, Skoda RC. The leptin receptor activates janus kinase 2 and signals for proliferation in a factor-dependent cell line. Mol Endocrinol. 1997;11:393–9.

    Article  CAS  PubMed  Google Scholar 

  58. Gao Q, Wolfgang MJ, Neschen S. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc Natl Acad Sci U S A. 2004;101:4661–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Dubinion JH, do Carmo JM, Adi A, Hamza S, da Silva AA, Hall JE. Role of signal transducer and activator of transcription 3 in proopiomelanocortin neurons in cardiovascular and metabolic actions of leptin. Hypertension. 2013;61:1066–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Rahmouni K, Haynes WG, Morgan DA, Mark AL. Intracellular mechanisms involved in leptin regulation of sympathetic outflow. Hypertension. 2002;41:763–7.

    Article  PubMed  Google Scholar 

  61. Choudhury AI, Heffron H, Smith MA, Al-Qassab H, Xu AW, Selman C, Simmgen M, Clements M, Claret M, Maccoll G, Bedford DC, Hisadome K, Diakonov I, Moosajee V, Bell JD, Speakman JR, Batterham RL, Barsh GS, Ashford ML, Withers DJ. The role of insulin receptor substrate 2 in hypothalamic and beta cell function. J Clin Invest. 2005;15:940–50.

    Article  Google Scholar 

  62. Lin X, Taguchi A, Park S, Kushner JA, Li F, Li Y, White MF. Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes. J Clin Invest. 2004;114:908–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Burks D, de Mora JF, Schubert M, Withers DJ, Myers MG, Towery HH, Altamuro SL, Flint CL, White MF. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature. 2000;407:377–82.

    Article  CAS  PubMed  Google Scholar 

  64. Krajewska M, Banares S, Zhang EE, Huang X, Scadeng M, Jhala US, Feng GS, Krajewski S. Development of diabesity in mice with neuronal deletion of Shp2 tyrosine phosphatase. Am J Pathol. 2008;172:1312–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Zhang EE, Chapeau E, Hagihara K, Feng GS. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc Natl Acad Sci U S A. 2004;9:16064–9.

    Article  Google Scholar 

  66. do Carmo JM, da Silva AA, Sessums PO, Ebaady SH, Pace BR, Rushing JS, Davis MT, Hall JE. Role of Shp2 in forebrain neurons in regulating metabolic and cardiovascular functions and responses to leptin. Int J Obes (Lond). 2014;38:775.

    Article  CAS  Google Scholar 

  67. Vong L, Ye C, Yang Z, Choi B, Chua Jr S, Lowell BB. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron. 2011;71:142–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Myers MP, Anderson JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP, Salmeen A, Barford D, Tonks NK. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem. 2001;276:47771–4.

    Article  CAS  PubMed  Google Scholar 

  69. Bjorbaek C, El-Haschimi K, Frantz JD, Flier JS. The role of SOCS3 in leptin signaling and leptin resistance. J Biol Chem. 1999;274:30059–65.

    Article  CAS  PubMed  Google Scholar 

  70. Belin de Chantemele EJ, Muta K, Mintz J, Tremblay ML, Marrero MB, Fulton DJ, Stepp DW. Protein tyrosine phosphatase 1B, a major regulator of leptin-mediated control of cardiovascular function. Circulation. 2009;120:753–63.

    Article  CAS  PubMed  Google Scholar 

  71. Banno R, Zimmer D, De Jonghe BC, Atienza M, Rak K, Yang W, Bence KK. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J Clin Invest. 2010;120:720–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, Yasukawa H, Yoshimura A. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med. 2004;10:739–43.

    Article  CAS  PubMed  Google Scholar 

  73. Tallam LS, Stec DE, Willis MA, da Silva AA, Hall JE. Melanocortin-4 receptor-deficient mice are not hypertensive or salt-sensitive despite obesity, hyperinsulinemia, and hyperleptinemia. Hypertension. 2005;46:326–32.

    Article  CAS  PubMed  Google Scholar 

  74. Tallam LS, da Silva AA, Hall JE. Melanocortin-4 receptor mediates chronic cardiovascular and metabolic actions of leptin. Hypertension. 2006;48:58–64.

    Article  CAS  PubMed  Google Scholar 

  75. Kievit P, Halem H, Marks DL, Dong JZ, Glavas MM, Sinnayah P, Pranger L, Cowley MA, Grove KL, Culler MD. Chronic treatment with a melanocortin 4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese Rhesus Macaques. Diabetes. 2013;62:490–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Greenfield JR. Melanocortin signaling and the regulation of blood pressure in human obesity. J Neuroendocrinol. 2011;23:186–93.

    Article  CAS  PubMed  Google Scholar 

  77. Sayk F, Heutling D, Dodt C, Iwen KA, Wellhoner JP, Scherag S, Hinney A, Hebebrand J, Lehnert H. Sympathetic function in human carriers of melanocortin-4 receptor gene mutations. J Clin Endocrinol Metab. 2010;95:1998–2002.

    Article  CAS  PubMed  Google Scholar 

  78. Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH, Cameron GS, Astruc B, Mayer JP, Brage S, See TC, Lomas DJ, O’Rahilly S, Farooqi IS. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. 2009;360:44–52.

    Article  CAS  PubMed  Google Scholar 

  79. Rahmouni K, Haynes WG, Morgan DA, Mark AL. Role of melanocortin-4 receptors in mediating renal sympathoactivation to leptin and insulin. J Neurosci. 2003;23:5998–6004.

    CAS  PubMed  Google Scholar 

  80. Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T, Ferreira M, Tang V, McGovern RA, Kenny CD, Christiansen LM, Edelstein E, Choi B, Boss O, Aschkenasi C, Zhang CY, Mountjoy K, Kishi T, Elmquist JK, Lowell BB. Divergence control of melanocortin pathways in the control of food intake and energy expenditure. Cell. 2005;123:493–505.

    Article  CAS  PubMed  Google Scholar 

  81. do Carmo JM, da Silva AA, Rushing JS, Pace B, Hall JE. Differential control of appetite and cardiovascular function after selective rescue of melanocortin-4 receptor in proopiomelanocortin neurons. Am J Physiol Regul Integr Comp Physiol. 2013;305:R359–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Li P, Cui BP, Zhang LL, Sun HJ, Liu TY, Zhu GQ. Melanocortin 3/4 receptors in paraventricular nucleus modulate sympathetic outflow and blood pressure. Exp Physiol. 2013;98:435–43.

    Article  CAS  PubMed  Google Scholar 

  83. Sohn JW, Harris LE, Berglund ED, Liu T, Vong L, Lowell BB, Balthasar N, Williams KW, Elmquist JK. Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neuron. Cell. 2013;152:612–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Sources of Funding 

The authors’ research was supported by grants from the National Heart, Lung and Blood Institute (PO1 HL51971), the National Institute of General Medical Sciences (P20 GM104357), and by an American Heart Association Scientist Development Grant to Jussara M. do Carmo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre A. da Silva Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

da Silva, A.A., do Carmo, J.M., Wang, Z., Hall, J.E. (2015). Leptin, the Autonomic Nervous System, and Hypertension. In: Dagogo-Jack, MD, S. (eds) Leptin. Springer, Cham. https://doi.org/10.1007/978-3-319-09915-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-09915-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-09914-9

  • Online ISBN: 978-3-319-09915-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics