Skip to main content
Log in

The relationship between regional blood flow and contractile function in normal, ischemic, and reperfused myocardium

  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The prevailing paradigm of coronary physiology and pathophysiology is that a balance between blood flow (i.e., supply) and function (i.e., demand) exists under normal conditions and that an imbalance between supply and demand occurs during ischemia. However, this paradigm is derived largely from studies relating changes in total coronary inflow to global ventricular function. The present article examines the relationship between myocardial blood flow and function on a regional level and proposes that a change may be needed in the current paradigm of coronary pathophysiology. In normal myocardium, considerable heterogeneity of regional blood flow exists, indicating either similar heterogeneity of metabolic demand and function or questioning the precision of metabolic coupling between flow and function. After the onset of ischemia, a transient imbalance between the reduced blood flow and function may exist. However, myocardial function rapidly declines and during early steady-state ischemia regional myocardial blood flow and function are once again evenly matched. Such supply-demand balance may persist over prolonged periods of ischemia enabling the myocardium to remain viable through reduction of energy expenditure for contractile function, i.e., to “hibernate”. Whereas in “hibernating” ischemic myocardium, regional myocardial blood flow and function are both reduced but appropriately matched to one another, flow and function appear to be largely uncoupled in reperfused “stunned” myocardium. The clinical identification of viable but ischemic (hibernating) and postischemic (stunned) myocardium is of utmost importance in patients undergoing reperfusion procedures. A new paradigm of coronary and myocardial pathophysiology, encompassing a regional as well as a global view of perfusion and function, will have to include explanations for phenomena such as myocardial hibernation and myocardial stunning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abel RM, Reis RL (1970) Effects of coronary blood flow and perfusion pressure on left ventricular contractility in dogs. Circ Res 27:961–971

    Google Scholar 

  2. Ambrosio G, Weisman HF, Mannisi JA, Becker LC (1989) Progressive impairment of regional myocardial perfusion after initial restoration of postischemic blood flow. Circulation 80:1846–1861

    Google Scholar 

  3. Armour JA, Randall WC (1971) Canine left ventricular intramyocardial pressures. Am J Physiol 220:1833–1839

    Google Scholar 

  4. Arnold G, Kosche F, Miessner E, Neitzert A, Lochner W (1968) The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart. Pfluegers Arch 299:339–356

    Google Scholar 

  5. Arnold G, Morgenstern C, Lochner W (1970) The autoregulation of the heart work by the coronary perfusion pressure. Pfluegers Arch 321:34–55

    Google Scholar 

  6. Austin RE, Aldea GS, Coggins DL, Flynn AE, Hoffman RE (1990) Profound spatial heterogeneity of coronary reserve. Discordance between patterns of resting and maximal myocardial blood flow. Circ Res 67:319–331

    Google Scholar 

  7. Aversano T, Becker LC (1985) Persistence of coronary vasodilator reserve despite functionally significant flow reduction. Am J Physiol 248:H403-H411

    Google Scholar 

  8. Bache RJ, Cobb FR (1977) Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ Res 41:648–653

    Google Scholar 

  9. Bassenge E, Heusch G (1990) Endothelial and neuro-humoral control of coronary blood flow in health and disease. Rev Physiol Biochem Pharmacol 116:77–165

    Google Scholar 

  10. Bassingthwaighte JB, King RB, Roger SA (1989) Fractal nature of regional myocardial blood flow heterogeneity. Circ Res 65:578–590

    Google Scholar 

  11. Bassingthwaighte JB, Malone MA, Moffett TC, King RB, Little SE, Link JM, Krohm KA (1987) Validity of microsphere depositions for regional myocardial flows. Am J Physiol 253:H184-H193

    Google Scholar 

  12. Battler A, Froelicher VF, Gallagher KP, Kemper WS, Ross Jr J (1980) Dissociation between regional myocardial dysfunction and ECG changes during ischemia in the conscious dog. Circulation 62:735–744

    Google Scholar 

  13. Bhargava V, Sunnerhagen KS, Rashwan M, Podolin RA, Shabetai R (1990) Detection and quantification of ischemic left ventricular dysfunction using a new video intensity technique for regional wall motion evaluation. Am Heart J 120:1058–1072

    Google Scholar 

  14. Bittl JA, Balschi JA, Ingwall JS (1987) Contractile failure and high-energy phosphate turnover during hypoxia: 31P-NMR surface coil studies in living rat. Circ Res 60:871–878

    Google Scholar 

  15. Bogen DK, Rabinowitz SA, Needleman A, McMahon TA, Abelmann WH (1980) An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ Res 47:728–741

    Google Scholar 

  16. Both R (1990) Mechanism of myocardial “stunning”. Circulation 82:723–738

    Google Scholar 

  17. Bolli R, Patel BS, Hartley CJ, Thronby JI, Jeroudi MO, Roberts R (1989) Nonuniform transmural recovery of contractile function in stunned myocardium. Am J Physiol 257:H375-H385

    Google Scholar 

  18. Bolli R, Triana JF, Jeroudi MO (1990) Prolonged impairment of coronary vasodilation after reversible ischemia. Circ Res 67:332–343

    Google Scholar 

  19. Bolli R, Zhu W-X, Thornby JI, O'Neill PG, Roberts R (1988) Time course and determinants of recovery of function after reversible ischemia in conscious dogs. Am J Physiol 254:H102-H114

    Google Scholar 

  20. Braasch W, Gudbjarnason S, Puri PS, Ravens KG, Bing RJ (1968) Early changes in energy metabolism in the myocardium following acute coronary artery occlusion in anesthetized dogs. Circ Res 23:429–438

    Google Scholar 

  21. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149

    Google Scholar 

  22. Buda AJ, Lefkowitz CA, Gallagher KP (1990) Augmentation of regional function in nonischemic myocardium during coronary occlusion measured with two-dimensional echocardiography. J Am Coll Cardiol 16:175–180

    Google Scholar 

  23. Buda AJ, Shlafer M, Gallagher KP (1988) Spatial and temporal characteristics of circumferential flow-function relations during acute myocardial ischemia in the conscious dog. Am Heart J 116:1514–1523

    Google Scholar 

  24. Buda AJ, Zotz RJ, Gallagher KP (1987) The effect of inotropic stimulation on normal and ischemic myocardium after coronary occlusion. Circulation 76:163–172

    Google Scholar 

  25. Büchner F (1939) Die Koronarinsuffizienz. Steinkopff-Verlag, Dresden and Leipzig, pp 1–92

    Google Scholar 

  26. Canty JM (1988) Coronary pressure-function and steady-state pressure-flow relations during autoregulation in the unanesthetized dog. Circ Res 63:821–836

    Google Scholar 

  27. Canty JM, Klocke FJ (1985) Reduced regional myocardial perfusion in the presence of pharmacologic vasodilator reserve. Circulation 71:370–377

    Google Scholar 

  28. Coggins DL, Flynn AE, Austin Jr RE, Aldea GS, Muehrcke D, Goto M, Hoffman HE (1990) Nonuniform loss of regional flow reserve during myocardial ischemia in dogs. Circ Res 67:253–264

    Google Scholar 

  29. Deussen A, Heusch G (1984) Einfluß einer akuten Myokardischaemie auf die haemodynamischen Parameter des Restmyokards. Herzmedizin 7:32–35

    Google Scholar 

  30. Downey HF, Bashour FA, Boatwright RB, Parker PE (1975) Uniformity of transmural perfusion in anesthetized dogs with maximally dilated coronary circulations. Circ Res 37:111–117

    Google Scholar 

  31. Downey JM (1976) Myocardial contractile force as a function of coronary blood flow. Am J Physiol 230:1–6

    Google Scholar 

  32. Drake DH, McClanahan TB, Ning XH, Gerren RH, Dunhan WR, Gallagher KP (1987) Changes in contractility fail to alter the size of the functional border zone in anesthetized dogs. Circ Res 61:166–180

    Google Scholar 

  33. Ehring T, Heusch G (1990) Left ventricular asynchrony: an indicator of regional myocardial dysfunction. Am Heart J 120:1047–1057

    Google Scholar 

  34. Ellis AK, Klocke FJ (1979) Effects of preload on the transmural distribution of perfusion and pressure-flow relationships in the canine coronary vascular bed. Circ Res 46:68–77

    Google Scholar 

  35. Engler RL, Dahlgren MD, Morris DD, Peterson MA, Schmid-Schönbein GW (1986) Role of leukocytes in response to acute myocardial ischemia and reflow in dogs. Am J Physiol 251:H314-H322

    Google Scholar 

  36. Fedele FA, Gewirtz H, Capone RJ, Sharaf B, Most AS (1988) Metabolic response to prolonged reduction of myocardial blood flow distal to a severe coronary artery stenosis. Circulation 78:729–735

    Google Scholar 

  37. Feigl EO (1983) Coronary physiology. Physiol Rev 63:1–205

    Google Scholar 

  38. Franzen D, Conway RS, Zhang H, Sonnenblick EH, Eng C (1988) Spatial heterogeneity of local blood flow and metabolic content in dog hearts. Am J Physiol 254:H344-H353

    Google Scholar 

  39. Freeman GL, LeWinter MM, Engler RL, Covell JW (1985) Relationship between myocardial fiber direction and segment shortening in the midwall of the canine left ventricle. Circ Res 56:31–39

    Google Scholar 

  40. Gallagher KP (1990) Regional myocardial flow-function relationship in ischemia. In: Heusch G (ed) Pathophysiology and Rational Pharmacotherapy of Myocardial Ischemia. Steinkopff, Springer, Darmstadt, New York, pp 111–135

    Google Scholar 

  41. Gallagher KP, Gerren RA, Ning X-H, McManimon SP, Stirling MC, Shlafer M, Buda AJ (1987) The functional border zone in conscious dogs. Circulation 76:929–942

    Google Scholar 

  42. Gallagher KP, Gerren RA, Stirling MC, Choy M, Dysko RC, McManimon SP, Dunham WR (1986) The distribution of functional impairment across the lateral border of acutely ischemic myocardium. Circ Res 58:570–583

    Google Scholar 

  43. Gallagher KP, Matsuzaki M, Koziol JA, Kemper WS, Ross Jr J (1984) Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 247:H727-H738

    Google Scholar 

  44. Gallagher KP, Matsuzaki M, Osakada G, Kemper WS, Ross Jr J (1983) Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res 52:716–729

    Google Scholar 

  45. Gallagher KP, Ning XH, Gerren RA, Drake DH, Dunham WR (1987) Effect of aortic constriction on the functional border zone. Am J Physiol 252:H826-H835

    Google Scholar 

  46. Gallagher KP, Osakada G, Hess OM, Koziol JA, Kemper WS, Ross Jr J (1982) Subepicardial segmental function during coronary stenosis and the role of myocardial fiber orientation. Circ Res 50:352–359

    Google Scholar 

  47. Gallagher KP, Osakada G, Matsuzaki M, Miller M, Kemper WS, Ross Jr J (1985) Nonuniformity of inner and outer systolic wall thickening in conscious dogs. Am J Physiol 249:H241-H248

    Google Scholar 

  48. Gallagher KP, Stirling MC, Choy M, Szpunar CA, Gerren RA, Botham MJ, Lemmer JH (1985) Dissociation between epicardial and transmural function during acute myocardial ischemia. Circulation 71:1279–1291

    Google Scholar 

  49. Gascho JA, Beller GA (1987) Adverse effects of circumflex coronary artery occlusion on blood flow to remote myocardium supplied by stenosed left anterior descending coronary artery in anesthetized open-chest dogs. Am Heart J 113:679–683

    Google Scholar 

  50. Gayheart PA, Vinten-Johansen J, Johnston WE, Hester TO, Cordell AR (1989) Oxygen requirements of the dyskinetic myocardial segment. Am J Physiol 257:H1184-H1191

    Google Scholar 

  51. Glower DD, Spratt JA, Snow ND, Kabas JS, Davis JW, Olsen CO, Tyson GS, Sabiston Jr DC, Rankin JS (1985) Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 71:994–1009

    Google Scholar 

  52. Gorman MW, Sparks Jr HV (1982) Progressive coronary vasoconstriction during relative ischemia in canine myocardium. Circ Res 51:411–420

    Google Scholar 

  53. Grattan MT, Hanley FL, Stevens MB, Hoffman RE (1986) Transmural coronary flow reserve patterns in dogs. Am J Physiol 250:H276-H283

    Google Scholar 

  54. Gregg DE (1963) Effect of coronary perfusion pressure or coronary flow on oxygen usage of the myocardium. Circ Res 13:497–500

    Google Scholar 

  55. Grines CL, Topol EJ, Califf RM, Stack RS, George BS, Kereiakes D, Boswick JM, Kline E, O'Neill WW, TAMI Study Group (1989) Prognostic implications and predictors of enhanced regional wall motion of the noninfarct zone after thrombolysis and angioplasty therapy after acute myocardial infarction. Circulation 80:245–253

    Google Scholar 

  56. Gross GJ, Farber NE, Hardman HF, Warltier DC (1986) Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol 250:H372-H377

    Google Scholar 

  57. Guth BD, Martin JF, Heusch G, Ross Jr J (1987) Regional myocardial blood flow, function and metabolism using phosphorus-31 nuclear magnetic resonance spectroscopy during ischemia and reperfusion. J Am Coll Cardiol 10:673–681

    Google Scholar 

  58. Guth BD, Schulz R, Heusch G (1990) Evaluation of parameters for the assessment of regional myocardial contractile function during asynchronous left ventricular contraction. Basic Res Cardiol 85:550–562

    Google Scholar 

  59. Guth BD, White FC, Gallagher KP, Bloor CM (1984) Decreased systolic wall thickening in myocardium adjacent to ischemic zones in conscious swine during brief coronary artery occlusion. Am Heart J 107:458–464

    Google Scholar 

  60. Guth BD, Wisneski JA, Neese RA, White FC, Heusch G, Mazer D, Gertz EW (1990) Myocardial lactate release during ischemia in swine. Relation to regional blood flow. Circulation 81:1948–1958

    Google Scholar 

  61. Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on the perfusion of stenotic coronary arteries in the dog. Circ Res 53:8–15

    Google Scholar 

  62. Heusch G, Guth BD, Gilpin E, Oudiz R, Matsuzaki M, Ross Jr J (1987) Determinants of recovery of regional contractile function after exercise-induced ischemia in conscious dogs. Fed Proc 46:834 (abstr)

    Google Scholar 

  63. Heusch G, Guth BD, Seitelberger R, Ross Jr J (1987) Attenuation of exercise-induced myocardial ischemia in dogs with recruitment of coronary vasodilator reserve by nifedipine. Circulation 75:482–490

    Google Scholar 

  64. Heusch G, Guth BD, Widmann T, Peterson KL, Ross Jr J (1987) Ischemic myocardial dysfunction assessed by temporal Fourier transform of regional myocardial wall thickening. Am Heart J 113:116–124

    Google Scholar 

  65. Heymann MA, Payne BD, Hoffman JIE, Rudolph AM (1977) Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis 20:55–78

    Google Scholar 

  66. Heyndrickx GR, Baig H, Nellens P, Leusen I, Fishbein MC, Vatner SF (1978) Depression of regional blood flow and wall thickening after brief coronary occlusions. Am J Physiol 234:H653-H659

    Google Scholar 

  67. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF (1975) Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56:978–985

    Google Scholar 

  68. Hoffman HE (1987) Transmural myocardial perfusion. Prog Cardiovasc Dis 29:429–464

    Google Scholar 

  69. Holman BL (1988) Nuclear Cardiology. In: Braunwald E (ed) Heart disease. W B Saunders, Philadelphia London Toronto Montreal Sydney Tokyo, pp 311–355

    Google Scholar 

  70. Holtz J, Grunewald WA, Manz R, Restorff WV, Bassenge E (1977) Intracapillary hemoglobin oxygen saturation and oxygen consumption in different layers of the left ventricular myocardium. Pfluegers Arch 370:253–258

    Google Scholar 

  71. Homans DC, Asinger R, Elsperger KJ, Erlien D, Sublett E, Mikell F, Bache RJ (1985) Regional function and perfusion at the lateral border of ischemic myocardium. Circulation 71:1038–1047

    Google Scholar 

  72. Indolfi C, Guth BD, Miura T, Miyazaki S, Schulz R, Ross Jr J (1989) Mechanisms of improved ischemic regional dysfunction by bradycardia. Studies on UL-FS 49 in swine. Circulation 80:983–993

    Google Scholar 

  73. Jacobus WE, Pores IH, Lucas SK, Kaliman CH, Weisfeldt ML, Flaherty JT (1982) The role of intracellular pH in the control of normal and Ischemic myocardial contractility: A31P nuclear magnetic resonance and mass spectrometry study. Alan R Liss, New York, pp 537–565

    Google Scholar 

  74. Jeremy RW, Links JM, Becker LC (1990) Progressive failure of coronary flow during reperfusion of myocardial infarction: documentation of the no reflow phenomenon with positron emission tomography. J Am Coll Cardiol 16:695–704

    Google Scholar 

  75. Jeremy RW, Stahl L, Gillinov M, Litt M, Aversano TR, Becker LC (1989) Preservation of coronary flow reserve in stunned myocardium. Am J Physiol 256:H1303-H1310

    Google Scholar 

  76. Kammermeier H, Schmidt P, Jungling E (1982) Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium? J Mol Cell Cardiol 14:267–277

    Google Scholar 

  77. Knabb RM, Ely SW, Bacchus AN, Rubio R, Berne RM (1983) Consistent parallel relationships among myocardial oxygen consumption, coronary blood flow, and pericardial infusate adenosine concentration with various interventions and β-blockade in the dog. Circ Res 53:33–41

    Google Scholar 

  78. Koretsune Y, Corretti MC, Kusuoka H, Marban E (1991) Mechanism of early Ischemic contractile failure. Circ Res 68:255–262

    Google Scholar 

  79. Kowallik P, Schulz R, Guth BD, Schade A, Paffhausen W, Gross R, Heusch G (1991) Measurement of regional myocardial blood flow with multiple colored microspheres. Circulation 83:974–982

    Google Scholar 

  80. Kusuoka H, Weisfeldt ML, Zweier JL, Jacobus WE, Marban E (1986) Mechanism of early contractile failure during hypoxia in intact ferret heart: Evidence for modulation of maximal Ca-activated force by inorganic phosphate. Circ Res 59:270–282

    Google Scholar 

  81. Kübler W, Katz AM (1977) Mechanism of early “pump” failure of the ischemic heart: possible role of adenosine triphosphate depletion and inorganic phosphate accumulation. Am J Cardiol 40:467–471

    Google Scholar 

  82. Lange R, Ware J, Kloner RA (1984) Absence of a cumulative deterioration of regional function during three repeated 5 or 15 minute coronary occlusions. Circulation 69:400–408

    Google Scholar 

  83. Laxson DD, Homans DC, Dai X-Z, Sublett E, Bache RJ (1989) Oxygen consumption and coronary reactivity in postischemic myocardium. Circ Res 64:9–20

    Google Scholar 

  84. Lee JD, Tajimi T, Guth BD, Seitelberger R, Miller M, Ross Jr J (1986) Exercise-induced regional dysfunction with subcritical coronary stenosis. Circulation 73:596–605

    Google Scholar 

  85. Lekven J, Bugge-Asperheim B, Kiil F (1972) Relationship between local myocardial dimensions and left ventricular volume in dogs. Scand J Clin Lab Invest 29:5–14

    Google Scholar 

  86. Lew WYW, Chen Z, Guth BD, Covell JW (1985) Mechanisms of augmented segment shortening in nonischemic areas during acute ischemia of the canine left ventricle. Circ Res 56:351–358

    Google Scholar 

  87. Lew WYW, LeWinter MM (1986) Regional comparison of midwall segment and area shortening in the canine left ventricle. Circ Res 58:678–691

    Google Scholar 

  88. LeWinter MM, Kent RS, Kroener JM, Carew TE, Covell JW (1975) Regional differences in myocardial performance in the left ventricle of the dog. Circ Res 37:191–199

    Google Scholar 

  89. Lima JAC, Becker LC, Melin JA, Lima S, Kallman CA, Weisfeldt ML, Weiss JL (1985) Impaired thickening of nonischemic myocardium during acute regional ischemia in the dog. Circulation 71:1048–1059

    Google Scholar 

  90. Marino PN, Kass DA, Becker LC, Lima JAC, Weiss JL (1989) Influence of site of regional ischemia on nonischemic thickening in anesthetized dogs. Am J Physiol 256:H1417-H1425

    Google Scholar 

  91. Marzilli M, Goldstein S, Sabbah HN, Lee T, Stein PD (1979) Modulating effect of regional myocardial performance on local myocardial perfusion in the dog. Circ Res 45:634–641

    Google Scholar 

  92. Matsuzaki M, Gallagher KP, Kemper WS, White F, Ross Jr J (1983) Sustained regional dysfunction produced by prolonged coronary stenosis: gradual recovery after reperfusion. Circulation 68:170–182

    Google Scholar 

  93. Matsuzaki M, Guth BD, Tajimi T, Kemper WS, Ross Jr J (1985) Effects of the combination of diltiazem and atenolol on exercise-induced regional myocardial ischemia in conscious dogs. Circulation 72:233–243

    Google Scholar 

  94. Matsuzaki M, Patritti J, Tajimi T, Miller M, Kemper WS, Ross Jr J (1984) Effects of β-blockade on regional myocardial flow and function during exercise. Am J Physiol 247:H52-H60

    Google Scholar 

  95. Miller WL, Belardinelli L, Bacchus A, Foley DH, Rubio R, Berne RM (1979) Canine myocardial adenosine and lactate production, oxygen consumption, and coronary blood flow during stellate ganglia stimulation. Circ Res 45:708–718

    Google Scholar 

  96. Miller WP, Flygenring BP, Nellis SH (1988) Effects of load alteration and coronary perfusion pressure on regional end-systolic relations. Circulation 78:1299–1309

    Google Scholar 

  97. Miller WP, Nellis SH, Liedtke AJ, Whitesell L, Effron BA (1990) Coronary hyperperfusion and ventricular function in intact and isovolumic pig hearts. Am J Physiol 258:11500–11507

    Google Scholar 

  98. Nayler WG, Poole-Wilson PA, Williams A (1979) Hypoxia and calcium. J Mol Cell Cardiol 11:683–706

    Google Scholar 

  99. Pantely GA, Bristow JD, Swenson LJ, Ladley HD, Johnson WB, Anselone CG (1985) Incomplete coronary vasodilation during myocardial ischemia in swine. Am J Physiol 249:H638-H647

    Google Scholar 

  100. Pantely GA, Malone SA, Rhen WS, Anselone CG, Arai A, Bristow J, Bristow JD (1990) Regeneration of myocardial phosphocreatine in pigs despite continued moderate ischemia. Circ Res 67:1481–1493

    Google Scholar 

  101. Pieper K, Guth BD, Schulz R, Janssen F, Martin C, Heusch G (1990) Anaerobe Glykolyse gestattet die Rekrutierung einer inotropen Reserve im ischämischen Myokard. Z Kardiol 79 suppl 2:19 (abstr)

    Google Scholar 

  102. Prinzen FW, Arts T, Hoeks APG (1989) Discrepancies between myocardial blood flow and fiber shortening in the ischemic border zone as assessed with video mapping of epicardial deformation. Pfluegers Arch 415:220–229

    Google Scholar 

  103. Prinzen FW, Arts T, van der Vusse GJ, Coumans WA, Reneman RS (1986) Gradients in fiber shortening and metabolism across the ischemic left ventricular wall. Am J Physiol 250:H255-H264

    Google Scholar 

  104. Prinzen FW, Arts T, van der Vusse GJ, Reneman RS (1984) Fiber shortening in the inner layers of the left ventricular wall as assessed from epicardial deformation during normoxia and ischemia. J Biomechanics 17:801–811

    Google Scholar 

  105. Prinzen TT, Arts T, Prinzen FW, Reneman RS (1986) Mapping of epicardial deformation using a video processing technique. J Biomechanics 19:263–273

    Google Scholar 

  106. Rahimtoola SH (1989) The hibernating myocardium. Am Heart J 117:211–221

    Google Scholar 

  107. Rahimtoola SH (1985) A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 72 Suppl V:V–123-V–135

    Google Scholar 

  108. Reimer KA, Jennings RB (1979) The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    Google Scholar 

  109. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56:786–794

    Google Scholar 

  110. Rein H (1931) Die Physiologie der Koronardurchblutung. Untersuchungen des Koronarkreislaufes am intakten Organismus. Verb Dtsch Ges Inn Med 43:247–262

    Google Scholar 

  111. Rein H (1931) Die Physiologic der Herz-Kranz-Gefäße. I. Mitteilung. Z Biol 92:101–114

    Google Scholar 

  112. Ross Jr J (1991) Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 83:1076–1083

    Google Scholar 

  113. Ross J Jr (1989) Mechanisms of regional ischemic and antianginal drug action during exercise. Prog Cardiovasc Dis 31:455–466

    Google Scholar 

  114. Rouleau J, Boerboom LE, Surjadhana A, Hoffman HE (1979) The role of autoregulation and tissue diastolic pressures in the transmural distribution of left ventricular blood flow in anesthetized dogs. Circ Res 45:804–815

    Google Scholar 

  115. Sabbah HN, Marzilli M, Stein PD (1981) The relative role of subendocardium and subepicardium in left ventricular mechanics. Am J Physiol 240:H920-H926

    Google Scholar 

  116. Sabbah HN, Stein PD (1982) Effect of acute regional ischemic on pressure in the subepicardium and subendocardium. Am J Physiol 242:H240-H244

    Google Scholar 

  117. Sabiston DC, Gregg DE (1957) Effect of cardiac contraction on coronary blood flow. Circulation 15:14–20

    Google Scholar 

  118. Sakai K, Watanabe K, Millard RW (1985) Defining the mechanical border zone: a study in the pig heart. Am J Physiol 249:1488–1494

    Google Scholar 

  119. Sasayama S, Franklin D, Ross Jr J, Kemper WS, McKown D (1976) Dynamic changes in left ventricular wall thickness and their use in analyzing cardiac function in the conscious dogs. Am J Cardiol 38:870–879

    Google Scholar 

  120. Sasayama S, Nonogi H, Fujita M, Sakurai T, Wakabayashi A, Kawai C, Eiho S, Kuwahara M (1984) Analysis of asynchronous wall motion by regional pressure-length loops in patients with coronary artery disease. J Am Coll Cardiol 4:259–267

    Google Scholar 

  121. Schaper W (1990) Der aktuelle Stand der experimentellen Herzinfarktforschung. Z Kardiol 79:811–818

    Google Scholar 

  122. Schneider RM, Morris KD, Chu A, Roberts KB, Coleman RE, Cobb FR (1987) Relation between myocardial perfusion and left ventricular function following acute coronary occlusion: disproportionate effects of anterior vs inferior ischemic. Circ Res 60:60–71

    Google Scholar 

  123. Schulz R, Guth BD, Heusch G (1991) No effect of coronary perfusion on regional myocardial function within the autoregulatory range in pigs: Evidence against the Gregg phenomenon. Circulation 83:1390–1403

    Google Scholar 

  124. Schulz R, Miyazaki S, Miller M, Thaulow E, Heusch G, Ross Jr J, Guth BD (1989) Consequences of regional inotropic stimulation of ischemic myocardium on regional myocardial blood flow and function in anesthetized swine. Circ Res 64:1116–1126

    Google Scholar 

  125. Spaan JAE, Breuls NPW, Laird JD (1981) Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in anesthetized dog. Circ Res 49:584–593

    Google Scholar 

  126. Stahl LD, Aversano TR, Becker LC (1986) Selective enhancement of function of stunned myocardium by increased flow. Circulation 74:843–851

    Google Scholar 

  127. Stahl LD, Weiss HR, Becker LC (1988) Myocardial oxygen consumption, oxygen supply/demand heterogeneity, and microvascular patency in regionally stunned myocardium. Circulation 77:865–872

    Google Scholar 

  128. Stirling MC, Choy M, McClanahan TB, Schott RJ, Gallagher KP (1991) Effects of ischemic on epicardial segment shortening. J Surg Res 50:30–39

    Google Scholar 

  129. Thaulow E, Guth BD, Heusch G, Gilpin E, Schulz R, Kröger K, Ross Jr J (1989) Characteristics of regional myocardial stunning after exercise in dogs with chronic coronary stenosis. Am J Physiol 257:14113–14119

    Google Scholar 

  130. Theroux P, Franklin D, Ross Jr J, Kemper WS (1974) Regional myocardial function during acute coronary artery occlusion and its modification by pharmacological agents in the dog. Circ Res 35:896–908

    Google Scholar 

  131. Theroux P, Ross Jr J, Franklin D, Kemper WS, Sasayama S (1976) Regional myocardial function in the conscious dog during acute coronary occlusion and responses to morphine, propranolol, nitroglycerin, and lidocaine. Circulation 53:302–314

    Google Scholar 

  132. Tillmanns H, Ikeda S, Hansen H, Sarma JSM, Fauvel J-M, Bing RJ (1974) Microcirculation in the ventricle of the dog and turtle. Circ Res 34:561–569

    Google Scholar 

  133. Tyberg JV, Forrester JS, Wyatt HL, Goldner SJ, Parmley WW, Swan HJC (1974) An analysis of segmental ischemic dysfunction utilizing the pressure-length loop. Circulation 49:748–754

    Google Scholar 

  134. Van der Vusse GJ, Arts T, Glatz JFC, Reneman RS (1990) Transmural differences in energy metabolism of the left ventricular myocardium: fact or fiction. J Mol Cell Cardiol 22:23–37

    Google Scholar 

  135. Vatner SF (1980) Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res 47:201–207

    Google Scholar 

  136. Villarreal FJ, Lew WYW, Waldman LK, Covell JW (1991) Transmural myocardial deformation in the ischemic canine left ventricle. Circ Res 68:368–381

    Google Scholar 

  137. Von Restorff W, Holtz J, Bassenge E (1977) Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pfluegers Arch 372:181–185

    Google Scholar 

  138. Waldman LK, Fung YC, Covell JW (1985) Transmural myocardial deformation in the canine left ventricle. Circ Res 57:152–163

    Google Scholar 

  139. Waldman LK, Nosan D, Villarreal F, Covell JW (1988) Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res 63:550–562

    Google Scholar 

  140. Weintraub WS, Hattori S, Agarwal JB, Bodenheimer MM, Banka VS, Helfant RH (1981) The relationship between myocardial blood flow and contraction by myocardial layer in the canine left ventricle during ischemia. Circ Res 48:430–438

    Google Scholar 

  141. Weiss HR, Neubauer JA, Lipp JA, Sinha AK (1978) Quantitative determination of regional oxygen consumption in the dog heart. Circ Res 42:394–401

    Google Scholar 

  142. Wiggers CJ (1954) The interplay of coronary vascular resistance and myocardial compression in regulating coronary flow. Circ Res 2:271–279

    Google Scholar 

  143. Wolpers HG, Schwaiger M (1990) Metabolic imaging of ischemic heart disease by positron emission tomography. In: Heusch G (ed) Pathophysiology and Rational Pharmacotherapy of Myocardial Ischemia. Steinkopff, Springer, Darmstadt New York, pp 59–81

    Google Scholar 

  144. Wüsten B, Buss DD, Deist H, Schaper W (1977) Dilatory capacity of the coronary circulation and its correlation to the arterial vasculature in the canine left ventricle. Basic Res Cardiol 72:636–650

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heusch, G. The relationship between regional blood flow and contractile function in normal, ischemic, and reperfused myocardium. Basic Res Cardiol 86, 197–218 (1991). https://doi.org/10.1007/BF02190600

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02190600

Key words

Navigation