Skip to main content
Log in

Regulation of alternative oxidase activity in higher plants

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Plant mitochondria contain two terminal oxidases: cytochrome oxidase and the cyanideinsensitive alternative oxidase. Electron partioning between the two pathways is regulated by the redox poise of the ubiquinone pool and the activation state of the alternative oxidase. The alternative oxidase appears to exist as a dimer which is active in the reduced, noncovalently linked form and inactive when in the oxidized, covalently linked form. Reduction of the oxidase in isolated tobacco mitochondria occurs upon oxidation of isocitrate or malate and may be mediated by matrix NAD(P)H. The activity of the reduced oxidase is governed by certain other organic acids, notably pyruvate, which appear to interact directly with the enzyme. Pyruvate alters the interaction between the alternative oxidase and ubiquinol so that the oxidase becomes active at much lower levels of ubiquinol and competes with the cytochrome pathway for electrons. These requirements for activation of the alternative oxidase constitute a sophisticated feed-forward control mechanism which determines the extent to which electrons are directed away from the energy-conserving cytochrome pathway to the non-energy conserving alternative oxidase. Such a mechanism fits well with the proposed role of the alternative oxidase as a protective enzyme which prevents over-reduction of the cytochrome chain and fermentation of accumulated pyruvate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azcón-Bieto, J., Lambers, H., and Day, D. A. (1983).Plant Physiol. 72, 598–603.

    Google Scholar 

  • Bahr, J. T., and Bonner, W. D. (1973).J. Biol. Chem. 248, 3441–3445.

    PubMed  Google Scholar 

  • Bodenstein-Lang, J., Buch, A., and Follmann, H. (1989).FEBS Lett. 258, 22–26.

    Article  PubMed  Google Scholar 

  • Day, D. A. (1992). InMolecular, Biochemical, and Physiological Aspects of Plant Respiration (Lambers, H., and Van der Plas, L. H. W., eds.), SPB Academic Publishing, The Hague, pp. 37–42.

    Google Scholar 

  • Day, D. A., and Lambers, H. (1983).Physiol. Plant. 58, 155–160.

    Google Scholar 

  • Day, D. A., Dry, I. B., Soole, K. L., Wiskich, J. T., and Moore, A. L. (1991).Plant Physiol. 95, 948–953.

    Google Scholar 

  • Day, D. A., Millar, A. H., Wiskich, J. T., and Whelan, J. (1994).Plant Physiol. 106, 1421–1427.

    PubMed  Google Scholar 

  • Day, D. A., Whelan, J., Millar, A. H., Siedow, J. N., and Wiskich, J. T. (1995).Aust. J. Plant. Physiol. 22, 497–509.

    Google Scholar 

  • Dry, I. B., Moore, A. L., Day, D. A., and Wiskich, J. T. (1989).Arch. Biochem. Biophys. 273, 148–157.

    Article  PubMed  Google Scholar 

  • Elthon, T. E., and McIntosh, L. (1987).Proc. Natl. Acad. Sci. USA 84, 8399–8403.

    Google Scholar 

  • Elthon, T. E., Nickels, R. L., and McIntosh, L. (1989).Plant Physiol. 89, 1311–1317.

    Google Scholar 

  • Gardeström, P., and Edwards, G. E. (1983).Plant Physiol. 71, 24–29.

    Google Scholar 

  • Hoefnagel, M. H. N., Millar, A. H., Wiskich, J. T., and Day, D. A. (1995).Arch. Biochem. Biophys.,318, 394–400.

    Article  PubMed  Google Scholar 

  • Lambers, H. (1985). InEncyclopedia of Plant Physiology, New Series (Douce, R., and Day, D. A., eds), Vol. 18, Springer-Verlag, Berlin, pp. 418–474.

    Google Scholar 

  • Lance, C., Chaveau, M., and Dizengremel, P. (1985). InHigher Plant Cell Respiration. Encyclopedia of Plant Physiology, New Series (Douce, R., and Day, D. A., eds.), Vol. 18, Berlin, Springer-Verlag, pp. 202–247.

    Google Scholar 

  • Laties, G. G. (1982).Annu. Rev. Plant Physiol. 33, 519–555.

    Article  Google Scholar 

  • Lidén, A. C., and Akerlund, H.-E. (1993).Physiol. Plant. 87, 134–141.

    Article  Google Scholar 

  • McIntosh, L. (1994).Plant Physiol. 105, 781–786.

    Article  PubMed  Google Scholar 

  • Meeuse, B. J. D. (1975).Annu. Rev. Plant Physiol. 26, 117–126.

    Article  Google Scholar 

  • Millar, A. H., Wiskich, J. T., Whelan, J., and Day, D. A. (1993).FEBS Lett. 329, 259–262.

    Article  PubMed  Google Scholar 

  • Minagawa, N., Sakajo, S., Komiyama, T., and Yoshimoto, A. (1990).FEBS Lett. 267, 114–116.

    Article  PubMed  Google Scholar 

  • Minagawa, N., Koga, S., Nakano, M., Sakajo, S., and Yoshimoto, A. (1992).FEBS Lett. 302, 217–219.

    Article  PubMed  Google Scholar 

  • Moore, A. L., and Siedow, J. N. (1991).Biochim. Biophys. Acta 1059, 121–140.

    PubMed  Google Scholar 

  • Moore, A. L., Dry, I. B., and Wiskich, J. T. (1988).FEBS Lett. 235, 76–80.

    Article  Google Scholar 

  • Purvis, A. C., and Shewfelt, R. L. (1993).Physiol. Plant. 88, 712–718.

    Google Scholar 

  • Rasmusson, A. G., and Møller, I. M. (1990).Plant Physiol. 94, 1012–1018.

    Google Scholar 

  • Ribas-Carbo, M., Berry, J. A., Azcón-Bieto, J., and Siedow, J. N. (1994).Biochim. Biophys. Acta 1188, 205–212.

    Google Scholar 

  • Ribas-Carbo, M., Wiskich, J. T., Berry, J. A., and Siedow, J. N. (1995).Arch. Biochem. Biophys. 317, 156–160.

    Article  PubMed  Google Scholar 

  • Rich, P. R. (1978).FEBS Lett. 96. 252–256.

    Article  Google Scholar 

  • Robinson, S. A., Yakir, D., Ribas-Carbo, M., Giles, L., Osmond, C. B., Siedow, J. N., and Berry, J. A. (1992).Plant Physiol. 100, 1087–1091.

    Google Scholar 

  • Robinson, S. A., Ribas-Carbo, M., Yakir, D., Giles, L., Reuveni, Y. and Berry, J. A. (1995).Aust. J. Plant Physiol., in press.

  • Rustin, P., and Queiroz-Claret, C. (1985).Planta 164, 415–422.

    Article  Google Scholar 

  • Siedow, J. N., and Moore, A. L. (1993).Biochim. Biophys. Acta 1142, 165–174.

    Google Scholar 

  • Umbach, A. L., and Siedow, J. N. (1993).Plant Physiol. 103, 845–854.

    PubMed  Google Scholar 

  • Umbach, A. L., and Siedow, J. N. (1994).Plant Physiol. 105, S66.

    Google Scholar 

  • Umbach, A. L., Wiskich, J. T., and Siedow, J. N. (1994).FEBS Lett. 348, 181–184.

    Article  PubMed  Google Scholar 

  • Vanlerberghe, G. C., and McIntosh, L. (1992a).Plant Physiol. 100, 1846–1851.

    Google Scholar 

  • Vanlerberghe, G. C., and McIntosh, L. (1992b).Plant Physiol. 100. 115–119.

    Google Scholar 

  • Vanlerberghe, G. C., Vanlerberghe, A. E., and McIntosh, L. (1994).Plant Physiol. 106, 1503–1510.

    PubMed  Google Scholar 

  • Wagner, A. M., Kraak, M. S., van Emmerik, W. A. M., and van der Plas, L. H. W. (1989).Physiol. Plant. 27, 837–845.

    Google Scholar 

  • Wilson, S. B. (1988).J. Biochem. 249, 301–303.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, D.A., Wiskich, J.T. Regulation of alternative oxidase activity in higher plants. J Bioenerg Biomembr 27, 379–385 (1995). https://doi.org/10.1007/BF02110000

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02110000

Key words

Navigation