Skip to main content

Leaf Anatomy and Function

  • Chapter
  • First Online:
The Leaf: A Platform for Performing Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 44))

Summary

Plant leaves provide the following main functions: (1) light interception and utilization of light energy for photosynthesis. This includes efficient light absorption under low and moderate light, while reducing excess light absorption under high light. (2) Incorporating CO2 as the substrate of photosynthesis, while limiting the amount of water lost. (3) Maintaining a stable internal environment for physiological processes by modulating leaf temperature. (4) Maintaining structural integrity that allows leaves to photosynthesize under various mechanical stresses such as gravity, wind, rainfall and herbivory. (5) Transporting water, photosynthates, and nutrients to realize efficient functioning of the plant and the leaf.

Subjected to both anatomical and environmental constraints, natural selection has resulted in an intricate leaf anatomy that balances the above functions and allows plants to grow and produce progeny. As a result, plants coordinate size, number, shape, and arrangement of cells, adjust the thickness and chemical composition of cell walls, and utilize physical phenomena such as water evaporation, refraction, and reflection of light.

In the present chapter, common features of leaf anatomy are described and the current knowledge related to its functions is summarized. Special emphasis will be given to leaf optical properties, gas diffusion, water transport, and mechanical properties. Acclimation and adaptation of leaf anatomy in response to environmental conditions will be reviewed. In addition, we will discuss the physiological mechanisms and ecological significance of these responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

a dimensionless correction factor to account for the fact that the mesophyll thickness is not equal to the effective distance between stomata and chloroplasts because of the spacing of stomata on the leaf surface and the presence of CO2 sinks along the diffusion path

BSE:

bundle-sheath extensions

c :

a dimensionless empirical coefficient, linking the boundary layer thickness to windspeed, leaf width, and air viscosity

C i :

CO2 concentration inside the leaf

d :

leaf width measured in the direction of the wind

D :

diffusion coefficient of CO2 through air

D v :

diffusion coefficient of water vapor

E B :

Young’s modulus in a bending test

E c :

Young’s modulus of the mesophyll

E f :

Young’s modulus of the epidermis

E T :

Young’s modulus in a tensile test

g ias :

conductance through intercellular airspaces

g m :

mesophyll conductance

g s :

stomatal conductance

HA:

high-light apex

helox:

air with nitrogen replaced by helium

HH:

plants grown in high light

HL:

plants grown in high light then transferred to low light

L :

mesophyll thickness

LA:

low-light apex

LMA:

leaf dry mass per area

PAR:

wavelengths of light absorbed by chlorophyll and utilized in photosynthesis

r ias :

resistance of CO2 to diffusion in the intercellular air space

r liq :

resistance of CO2 to diffusion in mesophyll liquid phase

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

s :

solubility of CO2 in apoplastic water

S c :

chloroplast surface area facing intercellular spaces per unit leaf area

α :

a material specific constant that links the tortuosity factor to the porosity of a porous structure

α m :

thickness fraction of the mesophyll

β :

the ratio of Young’s modulus of the mesophyll tissue to that of the epidermis, E c /E f

δ:

boundary layer thickness

ρ:

porosity of the leaf

τ:

tortuosity factor

u :

wind speed

v :

kinematic viscosity of air

References

  • Aalto T, Juurola E (2002) A three-dimensional model of CO2 transport in airspaces and mesophyll cells of a silver birch leaf. Plant Cell Environ 25:1399–1409

    Article  Google Scholar 

  • Aasamaa K, Sober A, Rahi M (2001) Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Aust J Plant Physiol 28:765–774

    Google Scholar 

  • Adachi S, Nakae T, Uchida M, Soda K, Takai T, Oi T, . . . Hirasawa T (2013) The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis. J Exp Bot 64: 1061—1072

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Cashmore AR (1993) Hy4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166

    Article  CAS  PubMed  Google Scholar 

  • Amada G, Onoda Y, Ichie T, Kitayama K (2017) Influence of leaf trichomes on boundary layer conductance and gas-exchange characteristics in Metrosideros polymorpha (Myrtaceae). Biotropica 49:482–492

    Article  Google Scholar 

  • Amiard V, Mueh KE, Demmig-Adams B, Ebbert V, Turgeon R, Adams WW (2005) Anatomical and photosynthetic acclimation to the light environment in species with differing mechanisms of phloem loading. Proc Natl Acad Sci USA 102:12968–12973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II – Inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134

    Article  CAS  PubMed  Google Scholar 

  • Atamna-Ismaeel N, Finkel OM, Glaser F, Sharon I, Schneider R, Post AF, . . . Belkin S (2012) Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ Microbiol 14: 140—146

    Article  CAS  PubMed  Google Scholar 

  • Augsten H, Wejnar R, Petermann F (1971) Einige Bemerkungen zur anatomisch-entwicklungsgeschichtlichen Terminologie des Blattes. Österr bot Z 119:572–576

    Article  Google Scholar 

  • Bacelar EA, Santos DL, Moutinho-Pereira JM, Gonçalves BC, Ferreira HF, Correia CM (2006) Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: Changes on structure and chemical composition of foliage and oxidative damage. Plant Sci 170:596–605

    Article  CAS  Google Scholar 

  • Bacelar EA, Moutinho-Pereira JM, Gonçalves BC, Ferreira HF, Correia CA (2007) Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes. Environ Exp Bot 60:183–192

    Article  CAS  Google Scholar 

  • Ballantine JEM, Forde BJ (1970) The effect of light intensity and temperature on plant growth and chloroplast ultrastructure in soybean. Am J Bot 57:1150–1159

    Article  CAS  Google Scholar 

  • Barbour MM, Evans JR, Simonin KA, von Caemmerer S (2016) Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New Phytol 210:875–889

    Article  CAS  PubMed  Google Scholar 

  • Barthlott W, Schimmel T, Wiersch S, Koch K, Brede M, Barczewski M et al (2010) The Salvinia paradox: superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv Mater 22:2325–2328

    Article  CAS  PubMed  Google Scholar 

  • Bartoli G, Bottega S, Forino LMC, Ciccarelli D, Spano C (2014) Plant adaptation to extreme environments: The example of Cistus salviifolius of an active geothermal alteration field. C R Biol 337:101–110

    Article  PubMed  Google Scholar 

  • Bartoli G, Bottega S, Spano C (2015) Morpho-anatomical and physiological traits of Agrostis castellana living in an active geothermal alteration field. Biologia 70:744–752

    Article  CAS  Google Scholar 

  • Bauer H, Thoni W (1988) Photosynthetic light acclimation in fully developed leaves of the juvenile and adult life phases of Hedera helix. Physiol Plant 73:31–37

    Article  CAS  Google Scholar 

  • Beerling DJ, Kelly CK (1996) Evolutionary comparative analyses of the relationship between leaf structure and function. New Phytol 134:35–51

    Article  Google Scholar 

  • Benz BW, Martin CE (2006) Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae). J Plant Physiol 163:648–656

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B, Jung YC (2006) Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surfaces. Nanotechnology 17:2758–2772

    Article  CAS  Google Scholar 

  • Björkman O (1981) Response to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological Plant Ecology Responses to the Physical Environment, Encyclopedia of Plant Physiology, New Series, Vol 12A. Springer, Berlin, pp 57–107

    Google Scholar 

  • Boese SR, Huner NPA (1990) Effect of growth temperature and temperature shifts on spinach leaf morphology and photosynthesis. Plant Physiol 94:1830–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bone RA, Lee DW, Norman JM (1985) Epidermal cells functioning as lenses in leaves of tropical rain forest shade plants. Appl Opt 24:1408–1412

    Article  CAS  PubMed  Google Scholar 

  • Bosabalidis AM, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci 163:375–379

    Article  CAS  Google Scholar 

  • Boyer JS (1985) Water transport. Annu Rev Plant Physiol Plant Mol Biol 36:473–516

    Article  Google Scholar 

  • Bredenkamp CL, Van Wyk AB (2001) Leaf anatomy of the genus Passerina (Thymelaeaceae): taxonomic and ecological significance. Bothalia 31:53–70

    Google Scholar 

  • Briggs WR, Huala E (1999) Blue-light photoreceptors in higher plants. Annu Rev Cell Dev Biol 15:33–62

    Article  CAS  PubMed  Google Scholar 

  • Brodersen CR, Vogelmann TC (2007) Do epidermal lens cells facilitate the absorptance of diffuse light? Am J Bot 94:1061–1066

    Article  PubMed  Google Scholar 

  • Brodersen CR, Vogelmann TC (2010) Do changes in light direction affect absorption profiles in leaves? Funct Plant Biol 37:403–412

    Article  Google Scholar 

  • Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144:1890–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodribb TJ, Feild TS, Sack L (2010) Viewing leaf structure and evolution from a hydraulic perspective. Funct Plant Biol 37:488–498

    Article  Google Scholar 

  • Brubaker CL, Lersten NR (1995) Paraveinal mesophyll: Review and survey of the subtribe Erythrininae (Phaseoleae, Papilionoideae, Leguminosae). Plant Syst Evol 196:31–62

    Article  Google Scholar 

  • Brugnoli E, Björkman O (1992) Chloroplast movements in leaves – Influence on chlorophyll fluorescence and measurements of light-induced absorbency changes related to ΔpH and zeaxanthin formation. Photosynth Res 32:23–35

    Article  CAS  PubMed  Google Scholar 

  • Bucher SF, Auerswald K, Grün-Wenzel C, Higgins SI, Garcia Jorge J, Römermann C (2017) Stomatal traits relate to habitat preferences of herbaceous species in a temperate climate. Flora 229:107–115

    Article  Google Scholar 

  • Buckley TN (2015) The contributions of apoplastic, symplastic and gas phase pathways for water transport outside the bundle sheath in leaves. Plant Cell Environ 38:7–22

    Article  PubMed  Google Scholar 

  • Buckley TN, Sack L, Gilbert ME (2011) The role of bundle sheath extensions and life form in stomatal responses to leaf water status. Plant Physiol 156:962–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley TN, John GP, Scoffoni C, Sack L (2015) How does leaf anatomy influence water transport outside the xylem? Plant Physiol 168:1616–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunce JA, Patterson DT, Peet MM, Alberte RS (1977) Light acclimation during and after leaf expansion in soybean. Plant Physiol 60:255–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burghardt M, Riederer M (2007) Cuticular transpiration. In: Riederer M, Müller C (eds) Annual plant reviews-biology of the plant cuticle, Vol 23, pp 292--311. Blackwell Publishing Ltd, Oxford

    Google Scholar 

  • Busch FA, Sage TL, Cousins AB, Sage RF (2013) C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ 36:200–212

    Article  CAS  PubMed  Google Scholar 

  • Bussotti F, Bettini D, Grossoni P, Mansuino S, Nibbi R, Soda C, Tani C (2002) Structural and functional traits of Quercus ilex in response to water availability. Environ Exp Bot 47:11–23

    Article  Google Scholar 

  • Canny MJ (1990) What becomes of the transpiration stream. New Phytol 114:341–368

    Article  PubMed  Google Scholar 

  • Canny MJ, Huang CX (2006) Leaf water content and palisade cell size. New Phytol 170:75–85

    Article  CAS  PubMed  Google Scholar 

  • Canny M, Wong SC, Huang C, Miller C (2012) Differential shrinkage of mesophyll cells in transpiring cotton leaves: implications for static and dynamic pools of water, and for water transport pathways. Funct Plant Biol 39:91–102

    Article  CAS  PubMed  Google Scholar 

  • Caringella MA, Bongers FJ, Sack L (2015) Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants. Plant Cell Environ 38:2735–2746

    Article  CAS  PubMed  Google Scholar 

  • Carolin RC, Jacobs SWL, Vesk M (1973) The structure of the cells of the mesophyll and parenchymatous bundle sheath of the Gramineae. Bot J Linn Soc 66:259–275

    Article  Google Scholar 

  • Casal JJ (2013) Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol 64:403–427

    Article  CAS  PubMed  Google Scholar 

  • Cashmore AR, Jarillo JA, Wu YJ, Liu DM (1999) Cryptochromes: Blue light receptors for plants and animals. Science 284:760–765

    Article  CAS  PubMed  Google Scholar 

  • Castro-Díez P, Villar-Salvador P, Pérez-Rontomé C, Maestro-Martínez M, Montserrat-Marti G (1997) Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees Struct Funct 11:127–134

    Google Scholar 

  • Chartzoulakis K, Patakas A, Kofidis G, Bosabalidis A, Nastou A (2002) Water stress affects leaf anatomy, gas exchange, water relations and growth of two avocado cultivars. Sci Hort 95:39–50

    Article  CAS  Google Scholar 

  • Chatelet DS, Clement WL, Sack L, Donoghue MJ, Edwards EJ (2013) The evolution of photosynthetic anatomy in Viburnum (Adoxaceae). Intl J Plant Sci 174:1277–1291

    Article  CAS  Google Scholar 

  • Chazdon RL, Fetcher N (1984) Photosynthetic light environments in a lowland tropical rain forest in Costa Rica. J Ecol 72:553–564

    Article  Google Scholar 

  • Chonan N (1978) Comparative anatomy of mesophyll among the leaves of gramineous crops. Japan Agric Res Quart 12:128–131

    Google Scholar 

  • Christie JM, Salomon M, Nozue K, Wada M, Briggs WR (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): Binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci USA 96:8779–8783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark JB, Lister GR (1975a) Photosynthetic action spectra of trees. 1. Comparative photosynthetic action spectra of one deciduous and 4 coniferous tree species as related to photorespiration and pigment complements. Plant Physiol 55: 401—406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark JB, Lister GR (1975b) Photosynthetic action spectra of trees. 2. Relationship of cuticle structure to visible and ultraviolet spectral properties of needles from 4 coniferous species. Plant Physiol 55: 407—413

    Google Scholar 

  • Cochard H, Nardini A, Coll L (2004) Hydraulic architecture of leaf blades: where is the main resistance? Plant Cell Environ 27:1257–1267

    Article  Google Scholar 

  • Cordell S, Goldstein G, Meinzer FC, Handley LL (1999) Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity and δ13C along an altitudinal gradient. Funct Ecol 13:811–818

    Article  Google Scholar 

  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Baker NR (ed) Photosynthesis and the environment. Springer, Dordrecht, pp 347–366

    Google Scholar 

  • Dalin P, Agren J, Björkman C, Huttunen P, Kärkkäinen K (2008) Leaf trichome formation and plant resistance to herbivory. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Dordrecht, pp 89–105

    Chapter  Google Scholar 

  • Davis PA, Hangarter RP (2012) Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves. Photosynth Res 112:153–161

    Article  CAS  PubMed  Google Scholar 

  • Davis PA, Caylor S, Whippo CW, Hangarter RP (2011) Changes in leaf optical properties associated with light-dependent chloroplast movements. Plant Cell Environ 34:2047–2059

    Article  CAS  PubMed  Google Scholar 

  • Delucia EH, Shenoi HD, Naidu SL, Day TA (1991) Photosynthetic symmetry of sun and shade leaves of different orientations. Oecologia 87:51–57

    Article  Google Scholar 

  • Dengler NG, Nelson T (1999) Leaf structure and development in C4 plants. In: Sage RF, Monson RK (eds) C4 Plant Biology. Academic, San Diego, pp 133–172

    Chapter  Google Scholar 

  • Dengler NG, Dengler RE, Donnelly PM, Hattersley PW (1994) Quantitative leaf anatomy of C3 and C4 grasses (Poaceae): bundle sheath and mesophyll surface area relationships. Ann Bot 73:241–255

    Article  Google Scholar 

  • Dörken VM (2013) Leaf dimorphism in Thuja plicata and Platycladus orientalis (thujoid Cupressaceae s. str., Coniferales): the changes in morphology and anatomy from juvenile needle leaves to mature scale leaves. Plant Syst Evolu 299:1991–2001

    Article  Google Scholar 

  • Driscoll SP, Prins A, Olmos E, Kunert KJ, Foyer CH (2006) Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. J Exp Bot 57:381–390

    Article  CAS  PubMed  Google Scholar 

  • Dumlao MR, Darehshouri A, Cohu CM, Muller O, Mathias J, Adams WW III, Demmig-Adams B (2012) Low temperature acclimation of photosynthetic capacity and leaf morphology in the context of phloem loading type. Photosynth Res 113:181–189

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer JR, Björkman O (1978) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36:151–162

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer JR, Mooney H (1978) Leaf hairs: effects on physiological activity and adaptive value to a desert shrub. Oecologia 37:183–200

    Article  CAS  PubMed  Google Scholar 

  • Epstein N (1989) On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem Engineer Sci 44:777–779

    Article  CAS  Google Scholar 

  • Esau K (1965) Plant anatomy. Wiley, Hoboken

    Google Scholar 

  • Evans JR (1999) Leaf anatomy enables more equal access to light and CO2 between chloroplasts. New Phytol 143:93–104

    Article  Google Scholar 

  • Evans JR, Loreto F (2000) Acquisition and diffusion of CO2 in higher plant leaves. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis. Springer, Dordrecht, pp 321–351

    Chapter  Google Scholar 

  • Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24:755–767

    Article  CAS  Google Scholar 

  • Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust J Plant Physiol 21:475–495

    Article  CAS  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60:2235–2248

    Article  CAS  PubMed  Google Scholar 

  • Fellows RJ, Boyer JS (1978) Altered ultrastructure of cells of sunflower leaves having low water potentials. Protoplasma 93:381–395

    Article  Google Scholar 

  • Flexas J, Ribas-Carbó M, Diaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621

    Article  CAS  PubMed  Google Scholar 

  • Frak E, Le Roux X, Millard P, Dreyer E, Jaouen G, Saint-Joanis B, Wendler R (2001) Changes in total leaf nitrogen and partitioning of leaf nitrogen drive photosynthetic acclimation to light in fully developed walnut leaves. Plant Cell Environ 24:1279–1288

    Article  CAS  Google Scholar 

  • Fukushima K, Hasebe M (2014) Adaxial-abaxial polarity: The developmental basis of leaf shape diversity. Genesis 52:1–18

    Article  PubMed  Google Scholar 

  • Gal A, Brumfeld V, Weiner S, Addadi L, Oron D (2012) Certain biominerals in leaves function as light scatterers. Adv Mater 24:OP77–OP83

    Article  CAS  PubMed  Google Scholar 

  • Galmés J, Manuel Ochogavía J, Gago J, José Roldán E, Cifre J, Àngel Conesa M (2013) Leaf responses to drought stress in Mediterranean accessions of Solanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. Plant Cell Environ 36:920–935

    Article  PubMed  CAS  Google Scholar 

  • Gates DM (1980) Biophysical ecology. Springer, New York

    Book  Google Scholar 

  • Gauhl E (1976) Photosynthetic response to varying light intensity in ecotypes of Solanum dulcamara L. from shaded and exposed habitats. Oecologia 22:275–286

    Article  CAS  PubMed  Google Scholar 

  • Gere JM, Timoshenko SP (1999) Mechanics of Materials 4th SI edition. Nelson Thornes, Cheltenham

    Google Scholar 

  • Gibson LJ, Ashby MF, Easterling KE (1988) Structure and mechanics of the iris leaf. J Mater Sci 23:3041–3048

    Article  Google Scholar 

  • Giuliani R, Koteyeva N, Voznesenskaya E, Evans MA, Cousins AB, Edwards GE (2013) Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (Genus Oryza). Plant Physiol 162:1632–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorsuch PA, Pandey S, Atkin OK (2010) Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves. Plant Cell Environ 33:244–258

    Article  CAS  PubMed  Google Scholar 

  • Gorton HL, Williams WE, Vogelmann TC (1999) Chloroplast movement in Alocasia macrorrhiza. Physiol Plant 106:421–428

    Article  CAS  Google Scholar 

  • Gorton HL, Herbert SK, Vogelmann TC (2003) Photoacoustic analysis indicates that chloroplast movement does not alter liquid-phase CO2 diffusion in leaves of Alocasia brisbanensis. Plant Physiol 132:1529–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregoriou K, Pontikis K, Vemmos S (2007) Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.). Photosynthetica 45:172–181

    Article  Google Scholar 

  • Groom PK, Lamont BB (1997) Xerophytic implications of increased sclerophylly: Interactions with water and light in Hakea psilorrhyncha seedlings. New Phytol 136:231–237

    Article  Google Scholar 

  • Grubb PJ (1986) Sclerophylls, pachyphylls and pycnophylls: the nature and significance of hard leaf surfaces. In: Juniper B, Southwood R (eds) Insects and the plant surface. Edward Arnold, London, pp 137–150

    Google Scholar 

  • Haberlandt G (1914) Physiologische Pflanzenanatomie. W Engelmann, Leipzig

    Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  PubMed  Google Scholar 

  • Hanba YT, Kogami H, Terashima I (2002) The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. Plant Cell Environ 25:1021–1030

    Article  Google Scholar 

  • Harada A, Takemiya A, Inoue S, Sakai T, Shimazaki K (2013) Role of RPT2 in leaf positioning and flattening and a possible inhibition of phot2 signaling by phot1. Plant Cell Physiol 54:36–47

    Article  CAS  PubMed  Google Scholar 

  • Hassiotou F, Evans JR, Ludwig M, Veneklaas EJ (2009) Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls. Plant Cell Environ 32:1596–1611

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama Y, Ueno O (2017) Intracellular position of mitochondria in mesophyll cells differs between C3 and C4 grasses. J Plant Res 130:885–892

    Article  CAS  PubMed  Google Scholar 

  • Haupt W, Scheuerlein R (1990) Chloroplast movement. Plant Cell Environ 13:595–614

    Article  Google Scholar 

  • He J, Chee CW, Goh CJ (1996) ‘Photoinhibition’ of Heliconia under natural tropical conditions: The importance of leaf orientation for light interception and leaf temperature. Plant Cell Environ 19:1238–1248

    Article  Google Scholar 

  • Hendricks SB (1960) Rates of change of phytochrome as an essential factor determining photoperiodism in plants. Cold Spr Harbor Symp Quant Biol 25:245–248

    Article  CAS  Google Scholar 

  • Higa T, Wada M (2016) Chloroplast avoidance movement is not functional in plants grown under strong sunlight. Plant Cell Environ 39:871–882

    Article  CAS  PubMed  Google Scholar 

  • Ho QT, Berghuijs HNC, Watte R, Verboven P, Herremans E, Yin XY, . . . Nicolai BM (2016) Three-dimensional microscale modelling of CO2 transport and light propagation in tomato leaves enlightens photosynthesis. Plant Cell Environ 39: 50—61

    Article  CAS  PubMed  Google Scholar 

  • Hofreiter A, Lyshede OB (2006) Functional leaf anatomy of Bomarea Mirb. (Alstroemeriaceae). Bot J Linn Soc 152:73–90

    Article  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Ichie T, Inoue Y, Takahashi N, Kamiya K, Kenzo T (2016) Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest. J Plant Res 129:625–635

    Article  PubMed  Google Scholar 

  • Imamura S (1931) Über die dorsiventralität der unifazialen Blätter von Iris japonica, Thunb. und ihre Beeinflussbarkeit durch die Schwerkraft. Memoirs of the College of Science. Kyoto Imperial Univ Ser B 6:271–331

    Google Scholar 

  • Imamura S, Hida M (1956) Dorsiventral structure of unifacial leaves in several Iris species. Bot Mag Tokyo 69:570–577

    Article  Google Scholar 

  • Ishibashi M, Terashima I (1995) Effects of continuous leaf wetness on photosynthesis – Adverse aspects of rainfall. Plant Cell Environ 18:431–438

    Article  Google Scholar 

  • Ivanova LA, Petrov MS, Kadushnikov RM (2006) Determination of mesophyll diffusion resistance in Chamaerion angustifolium by the method of three-dimensional reconstruction of the leaf cell packing. Russ J Plant Physiol 53:316–324

    Article  CAS  Google Scholar 

  • Jiang CD, Wang X, Gao HY, Shi L, Chow WS (2011) Systemic regulation of leaf anatomical structure, photosynthetic performance, and high-light tolerance in sorghum. Plant Physiol 155:1416–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joel DM, Gepstein S (1985) Chloroplasts in the epidermis of Sarracenia (the American pitcher plant) and their possible role in carnivory – an immunocytochemical approach. Physiol Plant 63:71–75

    Article  CAS  Google Scholar 

  • Johnson HB (1975) Plant pubescence: an ecological perspective. Bot Rev 41:233–258

    Article  Google Scholar 

  • Jones HD (1983) Plants and Microclimate. Cambridge University Press, Cambridge

    Google Scholar 

  • Jurik TW, Chabot JF, Chabot BF (1979) Ontogeny of photosynthetic performance in Fragaria virginiana under changing light regimes. Plant Physiol 63:542–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamaluddin M, Grace J (1992) Photoinhibition and light acclimation in seedlings of Bischofia javanica, a tropical forest tree from Asia. Ann Bot 69:47–52

    Article  Google Scholar 

  • Kami C, Lorrain S, Hornitschek P, Fankhauser C (2010) Light-regulated plant growth and development. Curr Topics Develop Biol 91:29–66

    Article  CAS  Google Scholar 

  • Kaplan DR (1975) Comparative developmental evaluation of the morphology of unifacial leaves in the monocotyledons. Bot Jahrb Syst 95:1–105

    Google Scholar 

  • Karabourniotis G, Bornman JF, Nikolopoulos D (2000) A possible optical role of the bundle sheath extensions of the heterobaric leaves of Vitis vinifera and Quercus coccifera. Plant Cell Environ 23:423–430

    Article  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen G, Mullineaux P (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284:654–657

    Article  CAS  PubMed  Google Scholar 

  • Kasahara M, Kagawa T, Oikawa K, Suetsugu N, Miyao M, Wada M (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420:829–832

    Article  CAS  PubMed  Google Scholar 

  • Kevekordes KG, McCully ME, Canny MJ (1988) The occurrence of an extended bundle sheath system (paraveinal mesophyll) in the legumes. Can J Bot 66:94–100

    Article  Google Scholar 

  • Kim W-Y, Fujiwara S, Suh S-S, Kim J, Kim Y, Han L, . . . Somers DE (2007) ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449: 356—360

    Article  CAS  PubMed  Google Scholar 

  • Kogami H, Hanba YT, Kibe T, Terashima I, Masuzawa T (2001) CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes. Plant Cell Environ 24:529–538

    Article  CAS  Google Scholar 

  • Konrad W, Burkhardt J, Ebner M, Roth-Nebelsick A (2015) Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. Ecohydrology 8:480–492

    Article  Google Scholar 

  • Krauss P, Markstadter C, Riederer M (1997) Attenuation of UV radiation by plant cuticles from woody species. Plant Cell Environ 20:1079–1085

    Article  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Leadley PW, Reynolds JA, Thomas JF, Reynolds JF (1987) Effects of CO2 enrichment on internal leaf surface area in soybeans. Bot Gaz 148:137–140

    Article  Google Scholar 

  • Leegood RC (2008) Roles of the bundle sheath cells in leaves of C3 plants. J Exp Bot 59:1663–1673

    Article  CAS  PubMed  Google Scholar 

  • Lehmeier C, Pajor R, Lundgren MR, Mathers A, Sloan J, Bauch M, ... Fleming AJ (2017) Cell density and airspace patterning in the leaf can be manipulated to increase leaf photosynthetic capacity. Plant J 92: 981—994

    Google Scholar 

  • Leigh A, Sevanto S, Ball MC, Close JD, Ellsworth DS, Knight CA et al (2012) Do thick leaves avoid thermal damage in critically low wind speeds? New Phytol 194:477–487

    Article  CAS  PubMed  Google Scholar 

  • Lersten NR (1997) Occurrence of endodermis with a casparian strip in stem and leaf. Bot Rev 63:265–272

    Article  Google Scholar 

  • Levin DA (1973) The role of trichomes in plant defense. Quart Rev Biol 48:3–15

    Article  Google Scholar 

  • Li WD, Hu X, Liu JK, Jiang GM, Li O, Xing D (2011) Chromosome doubling can increase heat tolerance in Lonicera japonica as indicated by chlorophyll fluorescence imaging. Biol Plant 55:279–284

    Article  CAS  Google Scholar 

  • Liakopoulos G, Nikolopoulos D, Klouvatou A, Vekkos KA, Manetas Y, Karabourniotis G (2006) The photoprotective role of epidermal anthocyanins and surface pubescence in young leaves of grapevine (Vitis vinifera). Ann Bot 98:257–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liesche J, Martens HJ, Schulz A (2011) Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma 248:181–190

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Lucas PW, Choong MF, Tan HTW, Turner IM, Berrick AJ (1991) The fracture toughness of the leaf of the dicotyledon Calophyllum inophyllum L. (Guttiferae). Philos Trans Roy Soc London B Biol Sci 334:95–106

    Article  Google Scholar 

  • Lundgren MR, Osborne CP, Christin PA (2014) Deconstructing Kranz anatomy to understand C4 evolution. J Exp Bot 65:3357–3369

    Article  PubMed  Google Scholar 

  • March RH, Clark LG (2011) Sun-shade variation in bamboo (Poaceae: Bambusoideae) leaves. Telopea 13:93–104

    Article  Google Scholar 

  • Martin JT, Juniper BE (1970) The cuticles of plants. Arnold, London

    Google Scholar 

  • Martin G, Josserand SA, Bornman JF, Vogelmann TC (1989) Epidermal focusing and the light microenvironment within leaves of Medicago sativa. Physiol Plant 76:485–492

    Article  Google Scholar 

  • Mashayekhi S, Columbus JT (2014) Evolution of leaf blade anatomy in Allium (Amaryllidaceae) subgenus Amerallium with a focus on the North American species. Am J Bot 101:63–85

    Article  PubMed  Google Scholar 

  • McCree KJ (1972) Action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9:191–216

    Article  Google Scholar 

  • Medina E, Sobrado M, Herrera R (1978) Significance of leaf orientation for leaf temperature in an Amazonian sclerophyll vegetation. Rad Environ Biophys 15:131–140

    Article  CAS  Google Scholar 

  • Metcalfe CR (1956) Some thoughts on the structure of bamboo leaves. Shokubutsugaku Zasshi 69:391–400

    Article  Google Scholar 

  • Metcalfe CR (1979) Ecological anatomy and morphology general survey. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons, vol 1, 2nd edn. Clarendon Press, Oxford, pp 126–152

    Google Scholar 

  • Metcalfe CR, Chalk L (eds) (1950) Anatomy of the dicotyledons, vol 1 & 2. Clarendon Press, Oxford

    Google Scholar 

  • Michaletz ST, Weiser MD, McDowell NG, Zhou J, Kaspari M, Helliker BR, Enquist BJ (2016) The energetic and carbon economic origins of leaf thermoregulation. Nature Plants 2:16129

    Article  CAS  PubMed  Google Scholar 

  • Milthorpe FL, Newton P (1963) Studies on the expansion of the leaf surface. III. The influence of radiation on cell division and leaf expansion. J Exp Bot 14:483–495

    Article  Google Scholar 

  • Möglich A, Yang X, Ayers RA, Moffat K (2010) Structure and function of plant photoreceptors. Annu Rev Plant Biol 61:21–47

    Article  PubMed  CAS  Google Scholar 

  • Mommer L, Pons TL, Visser EJW (2006) Photosynthetic consequences of phenotypic plasticity in response to submergence: Rumex palustris as a case study. J Exp Bot 57:283–290

    Article  CAS  PubMed  Google Scholar 

  • Monteith JL, Unsworth MH (2013) Principles of environmental physics, 4th edn. Academic, Massachusetts

    Google Scholar 

  • Morison JI, Lawson T (2007) Does lateral gas diffusion in leaves matter? Plant Cell Environ 30:1072–1085

    Article  CAS  PubMed  Google Scholar 

  • Morison JI, Gallouet E, Lawson T, Cornic G, Herbin R, Baker NR (2005) Lateral diffusion of CO2 in leaves is not sufficient to support photosynthesis. Plant Physiol 139:254–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott KA, Gibson AC, Oleary JW (1982) The adaptive significance of amphistomatic leaves. Plant Cell Environ 5:455–460

    Article  Google Scholar 

  • Muhaidat R, Sage RF, Dengler NG (2007) Diversity of Kranz anatomy and biochemistry in C4 eudicots. Amer J Bot 94:362–381

    Article  CAS  Google Scholar 

  • Muir CD (2015) Making pore choices: repeated regime shifts in stomatal ratio. Proc Roy Soc B Biol Sci 282:20151498

    Article  Google Scholar 

  • Muir CD (2018) Light and growth form interact to shape stomatal ratio among British angiosperms. New Phytol 218:242–252 https://doi.org/10.1111/nph.14956

    Article  PubMed  CAS  Google Scholar 

  • Muir CD, Hangarter RP, Moyle LC, Davis PA (2014) Morphological and anatomical determinants of mesophyll conductance in wild relatives of tomato (Solanum, sect. Lycopersicon, sect. Lycopersicoides; Solanaceae). Plant Cell Environ 37:1415–1426

    Article  CAS  PubMed  Google Scholar 

  • Muller O, Oguchi R, Hirose T, Werger MJA, Hikosaka K (2009) The leaf anatomy of a broad-leaved evergreen allows an increase in leaf nitrogen content in winter. Physiol Plant 136:299–309

    Article  CAS  PubMed  Google Scholar 

  • Munekage YN, Inoue S, Yoneda Y, Yokota A (2015) Distinct palisade tissue development processes promoted by leaf autonomous signalling and long-distance signalling in Arabidopsis thaliana. Plant Cell Environ 38:1116–1126

    Article  CAS  PubMed  Google Scholar 

  • Murchie EH, Horton P (1997) Acclimation of photosynthesis to irradiance and spectral quality in British plant species: Chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ 20:438–448

    Article  Google Scholar 

  • Nakashima Y, Kamiya S (2007) Mathematica programs for the analysis of three-dimensional pore connectivity and anisotropic tortuosity of porous rocks using X-ray computed tomography image data. J Nuc Sci Technol 44:1233–1247

    Article  CAS  Google Scholar 

  • Nakata M, Okada K (2013) The leaf adaxial-abaxial boundary and lamina growth. Plants 2:174–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Nasrulhaqboyce A, Duckett JG (1991) Dimorphic epidermal cell chloroplasts in the mesophyll-less leaves of an extreme-shade tropical fern, Teratophyllum rotundifoliatum (R Bonap) Holtt – a light and electron-microscope study. New Phytol 119:433–444

    Article  Google Scholar 

  • Neger FW (1912) Spaltöffnungsschluß und künstliche Turgorsteigerung. Ber Deut Bot Ges 30:179–194

    Google Scholar 

  • Neger FW (1918) Die Wegsamkeit der Laubblätter für Gase. Flora 111:152–161

    Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677

    Article  Google Scholar 

  • Niinemets Ü, Fleck S (2002) Leaf biomechanics and biomass investment in support in relation to long-term irradiance in Fagus. Plant Biol 4:523–534

    Article  Google Scholar 

  • Niinemets Ü, Reichstein M (2003) Controls on the emission of plant volatiles through stomata: a sensitivity analysis. J Geophys Res Atmos 108:4211

    Article  CAS  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  • Nikolopoulos D, Liakopoulos G, Drossopoulos I, Karabourniotis G (2002) The relationship between anatomy and photosynthetic performance of heterobaric leaves. Plant Physiol 129:235–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishio JN, Sun J, Vogelmann TC (1993) Carbon fixation gradients across spinach leaves do not follow internal light gradients. Plant Cell 5:953–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobel PS (2009) Physicochemical and environmental plant physiology. Academic, New York

    Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2003) Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ 26:505–512

    Article  Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2005) Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ 28:916–927

    Article  Google Scholar 

  • Oguchi R, Hikosaka K, Hiura T, Hirose T (2006) Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool-temperate deciduous forest. Oecologia 149:571–582

    Article  CAS  PubMed  Google Scholar 

  • Oguchi R, Hiura T, Hikosaka K (2017) The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understorey tree seedlings in response to gap formations in a cool-temperate deciduous forest. Tree Physiol 37:1113–1127

    Article  PubMed  Google Scholar 

  • Ohgishi M, Saji K, Okada K, Sakai T (2004) Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA 101:2223–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtsuka A, Sack L, Taneda H (2018) Bundle sheath lignification mediates the linkage of leaf hydraulics and venation. Plant Cell Environ 41:342–353

    Article  CAS  PubMed  Google Scholar 

  • Okajima Y, Taneda H, Noguchi K, Terashima I (2011) Optimum leaf size predicted by a novel leaf energy balance model incorporating dependencies of photosynthesis on light and temperature. Ecol Res 27:333–346

    Article  CAS  Google Scholar 

  • Onoda Y, Schieving F, Anten NPR (2008) Effects of light and nutrient availability on leaf mechanical properties of Plantago major: a conceptual approach. Ann Bot 101:727–736

    Article  PubMed  PubMed Central  Google Scholar 

  • Onoda Y, Westoby M, Adler PB, Choong AM, Clissold FJ, Cornelissen JH et al (2011) Global patterns of leaf mechanical properties. Ecol Lett 14:301–312

    Article  PubMed  Google Scholar 

  • Onoda Y, Richards L, Westoby M (2012) The importance of leaf cuticle for carbon economy and mechanical strength. New Phytol 196:441–447

    Article  PubMed  Google Scholar 

  • Onoda Y, Salunga JB, Akutsu K, Aiba S, Yahara T, Anten NPR (2014) Trade-off between light interception efficiency and light use efficiency: implications for species coexistence in one-sided light competition. J Ecol 102:167–175

    Article  Google Scholar 

  • Onoda Y, Schieving F, Anten NP (2015) A novel method of measuring leaf epidermis and mesophyll stiffness shows the ubiquitous nature of the sandwich structure of leaf laminas in broad-leaved angiosperm species. J Exp Bot 66:2487–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü et al (2017) Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol 214:1447–1463

    Article  CAS  PubMed  Google Scholar 

  • Palatnik JF, Allen E, Wu XL, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst DF (1977) A three-dimensional model for CO2 uptake by continuously distributed mesophyll in leaves. J Theor Biol 67:471–488

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst DF (1978) Adaptive significance of stomatal occurrence on one or both surfaces of leaves. J Ecol 66:367–383

    Article  Google Scholar 

  • Parkhurst DF (1994) Diffusion of CO2 and other gases inside leaves. New Phytol 126:449–479

    Article  CAS  PubMed  Google Scholar 

  • Parkhurst DF, Loucks OL (1972) Optimal leaf size in relation to environment. J Ecol 60:505–537

    Article  Google Scholar 

  • Parkhurst DF, Mott KA (1990) Intercellular diffusion limits to CO2 uptake in leaves. Plant Physiol 94:1024–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearcy RW, Seemann JR (1990) Photosynthetic induction state of leaves in a soybean canopy in relation to light regulation of ribulose-1-5-bisphosphate carboxylase and stomatal conductance. Plant Physiol 94:628–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearcy RW, Sims DA (1994) Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants: ecophysiological processes above and below ground. Academic, San Diego, pp 145–174

    Chapter  Google Scholar 

  • Peguero-Pina JJ, Flexas J, Galmés J, Niinemets U, Sancho-Knapik D, Barredo G, . . . Gil-Pelegrín E (2012) Leaf anatomical properties in relation to differences in mesophyll conductance to CO2 and photosynthesis in two related Mediterranean Abies species. Plant Cell Environ 35: 2121—2129

    Article  CAS  PubMed  Google Scholar 

  • Peguero-Pina JJ, Sisó S, Flexas J, Galmés J, García-Nogales A, Niinemets Ü et al (2017) Cell-level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks. New Phytol 214:585–596

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Estrada LB, Cano-Santana Z, Oyama K (2000) Variation in leaf trichomes of Wigandia urens: environmental factors and physiological consequences. Tree Physiol 20:629–632

    Article  PubMed  Google Scholar 

  • Pickup M, Westoby M, Basden A (2005) Dry mass costs of deploying leaf area in relation to leaf size. Funct Ecol 19:88–97

    Article  Google Scholar 

  • Piel C (2002) Diffusion du CO2 dans le mésophylle des plantes à métabolisme C3. PhD thesis, Université Paris XI Orsay, Paris, France

    Google Scholar 

  • Piel C, Frak E, Le Roux X, Genty B (2002) Effect of local irradiance on CO2 transfer conductance of mesophyll in walnut. J Exp Bot 53:2423–2430

    Article  CAS  PubMed  Google Scholar 

  • Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA 98:11812–11817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pino M-T, Skinner JS, Jeknic Z, Hayes PM, Soeldner AH, Thomashow MF, Chen THH (2008) Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant Cell Environ 31:393–406

    Article  CAS  PubMed  Google Scholar 

  • Poethig RS (1987) Clonal analysis of cell lineage patterns in plant development. Am J Bot 74:581–594

    Article  Google Scholar 

  • Pons TL, Poorter H (2014) The effect of irradiance on the carbon balance and tissue characteristics of five herbaceous species differing in shade-tolerance. Front Plant Sci 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Pospíšilová J, Solárová J (1980) Environmental and biological control of diffusive conductances of adaxial and abaxial leaf epidermis. Photosynthetica 14:90–127

    Google Scholar 

  • Prado K, Boursiac Y, Tournaire-Roux C, Monneuse J-M, Postaire O, Da Ines O et al (2013) Regulation of Arabidopsis leaf hydraulics involves light-dependent phosphorylation of aquaporins in veins. Plant Cell 25:1029–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyankov VI, Kondratchuk AV, Shipley B (1999) Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytol 143:131–142

    Article  Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58:179–207

    Article  CAS  Google Scholar 

  • Read J, Stokes A (2006) Plant biomechanics in an ecological context. Am J Bot 93:1546–1565

    Article  PubMed  Google Scholar 

  • Roth-Nebelsick A, Uhl D, Mosbrugger V, Kerp H (2001) Evolution and function of leaf venation architecture: a review. Ann Bot 87:553–566

    Article  Google Scholar 

  • Roth-Nebelsick A, Hassiotou F, Veneklaas EJ (2009) Stomatal crypts have small effects on transpiration: A numerical model analysis. Plant Physiol 151:2018–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy B, Stanton M, Eppley S (1999) Effects of environmental stress on leaf hair density and consequences for selection. J Evol Biol 12:1089–1103

    Article  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Article  Google Scholar 

  • Sack L, Frole K (2006) Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87:483–491

    Article  PubMed  Google Scholar 

  • Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Biol 57:361–381

    Article  CAS  PubMed  Google Scholar 

  • Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003) The ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ 26:1343–1356

    Article  Google Scholar 

  • Sack L, Scoffoni C, Johnson DM, Buckley TN, Brodribb TJ (2015) The anatomical determinants of leaf hydraulic function. In: Hacke U (ed) Functional and ecological xylem anatomy. Springer, Zürich, pp 255–271

    Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Sage TL, Sage RF (2009) The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant Cell Physiol 50: 756—772

    Article  CAS  PubMed  Google Scholar 

  • Sakai W, Sanford W (1980) Ultrastructure of the water-absorbing trichomes of pineapple (Ananas comosus, Bromeliaceae). Ann Bot 46:7–11

    Article  Google Scholar 

  • Sakurai N, Domoto K, Takagi S (2005) Blue-light-induced reorganization of the actin cytoskeleton and the avoidance response of chloroplasts in epidermal cells of Vallisneria gigantea. Planta 221:66–74

    Article  CAS  PubMed  Google Scholar 

  • Salem-Fnayou AB, Bouamama B, Ghorbel A, Mliki A (2011) Investigations on the leaf anatomy and ultrastructure of grapevine (Vitis vinifera) under heat stress. Microsc Res Techniq 74:756–762

    Article  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    Article  CAS  PubMed  Google Scholar 

  • Sancho-Knapik D, Gomez Álvarez-Arenas T, Javier Peguero-Pina J, Fernández V, Gil-Pelegrín E (2011) Relationship between ultrasonic properties and structural changes in the mesophyll during leaf dehydration. J Exp Bot 62:3637–3645

    Article  CAS  PubMed  Google Scholar 

  • Sanson G (2006) The biomechanics of browsing and grazing. Am J Bot 93:1531–1545

    Article  PubMed  Google Scholar 

  • Schmitt AK, Martin CE, Lüttge UE (1989) Gas exchange and water vapor uptake in the atmospheric CAM bromeliad Tillandsia recurvata L.: The influence of trichomes. Bot Acta 102:80–84

    Article  Google Scholar 

  • Schymanski SJ, Or D, Zwieniecki M (2013) Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations. Plos One 8:e54231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scippa GS, Di Michele M, Onelli E, Patrignani G, Chiatante D, Bray EA (2004) The histone-like protein H1-S and the response of tomato leaves to water deficit. J Exp Bot 55:99–109

    Article  CAS  PubMed  Google Scholar 

  • Scoffoni C, Pou A, Aasamaa K, Sack L (2008) The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant Cell Environ 31:1803–1812

    Article  PubMed  Google Scholar 

  • Scoffoni C, Vuong C, Diep S, Cochard H, Sack L (2014) Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance. Plant Physiol 164:1772–1788

    Article  CAS  PubMed  Google Scholar 

  • Secchi F, Zwieniecki MA (2014) Down-regulation of plasma intrinsic protein1 aquaporin in poplar trees is detrimental to recovery from embolism. Plant Physiol 164:1789–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao HB, Song WY, Chu LY (2008) Advances of calcium signals involved in plant anti-drought. Comp R Biol 331:587–596

    Article  CAS  Google Scholar 

  • Shatil-Cohen A, Attia Z, Moshelion M (2011) Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Plant J 67:72–80

    Article  CAS  PubMed  Google Scholar 

  • Sheue CR, Sarafis V, Kiew R, Liu HY, Salino A, Kuo-Huang LL, . . . Ku MSB (2007) Bizonoplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae). Am J Bot 94: 1922—1929

    Article  PubMed  Google Scholar 

  • Sheue CR, Pao SH, Chien LF, Chesson P, Peng C-I (2012) Natural foliar variegation without costs? The case of Begonia. Ann Bot 109:1065–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shields LM (1950) Leaf xeromorphy as related to physiological and structural influences. Bot Rev 16:399–447

    Article  Google Scholar 

  • Shimazaki K, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movement. Annu Rev Plant Biol 58:219–247

    Article  CAS  PubMed  Google Scholar 

  • Sims DA, Pearcy RW (1992) Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light. Am J Bot 79:449–455

    Article  Google Scholar 

  • Skelton RP, Midgley JJ, Nyaga JM, Johnson SD, Cramer MD (2012) Is leaf pubescence of Cape Proteaceae a xeromorphic or radiation-protective trait? Aust J Bot 60:104–113

    Article  Google Scholar 

  • Skene DS (1974) Chloroplast structure in mature apple leaves grown under different levels of illumination and their response to changed illumination. Proc Roy Soc B Biol Sci 186:75–78

    Article  Google Scholar 

  • Slaton MR, Smith WK (2002) Mesophyll architecture and cell exposure to intercellular air space in alpine, desert, and forest species. Intl J Plant Sci 163:937–948

    Article  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants – an emerging synthesis. Nature 407:585–591

    Article  CAS  PubMed  Google Scholar 

  • Smith WK, Vogelmann TC, DeLucia EH, Bell DT, Shepherd KA (1997) Leaf form and photosynthesis. Bioscience 47:785–793

    Article  Google Scholar 

  • Stata M, Sage TL, Rennie TD, Khoshravesh R, Sultmanis S, Khaikin Y et al (2014) Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants. Plant Cell Environ 37:2587–2600

    Article  CAS  PubMed  Google Scholar 

  • Stessman D, Miller A, Spalding M, Rodermel S (2002) Regulation of photosynthesis during Arabidopsis leaf development in continuous light. Photosynth Res 72:27–37

    Article  CAS  PubMed  Google Scholar 

  • Stewart JJ, Demmig-Adams B, Cohu CM, Wenzl CA, Muller O, Adams WW III (2016) Growth temperature impact on leaf form and function in Arabidopsis thaliana ecotypes from northern and southern Europe. Plant Cell Environ 39:1549–1558

    Article  CAS  PubMed  Google Scholar 

  • Syvertsen JP, Lloyd J, McConchie C, Kriedemann PE, Farquhar GD (1995) On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ 18:149–157

    Article  Google Scholar 

  • Sztatelman O, Waloszek A, Banas AK, Gabrys H (2010) Photoprotective function of chloroplast avoidance movement: In vivo chlorophyll fluorescence study. J Plant Physiol 167:709–716

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Mineuchi K, Nakamura T, Koizumi M, Kano H (1994) A system for imaging transverse distribution of scattered light and chlorophyll fluorescence in intact rice leaves. Plant Cell Environ 17:105–110

    Article  Google Scholar 

  • Taneda H, Kandel DR, Ishida A, Ikeda H (2016) Altitudinal changes in leaf hydraulic conductance across five Rhododendron species in eastern Nepal. Tree Physiol 36:1272–1282

    Article  PubMed  CAS  Google Scholar 

  • Terashima I (1992) Anatomy of nonuniform leaf photosynthesis. Photosynth Res 31:195–212

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Hikosaka K (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ 18:1111–1128

    Article  Google Scholar 

  • Terashima I, Inoue Y (1984) Comparative photosynthetic properties of palisade tissue chloroplasts and spongy tissue chloroplasts of Camellia japonica L – functional adjustment of the photosynthetic apparatus to light environment within a leaf. Plant Cell Physiol 25:555–563

    CAS  Google Scholar 

  • Terashima I, Inoue Y (1985) Vertical gradient in photosynthetic properties of spinach-chloroplasts dependent on intra-leaf light environment. Plant Cell Physiol 26:781–785

    Article  CAS  Google Scholar 

  • Terashima I, Saeki T (1983) Light environment within a leaf I. Optical properties of paradermal sections of camellia leaves with special reference to differences in the optical properties of palisade and spongy tissues. Plant Cell Physiol 24:1493–1501

    Article  CAS  Google Scholar 

  • Terashima I, Ishibashi M, Ono K, Hikosaka K (1995) Three resistances to CO2 diffusion: leaf-surface water, intercellular spaces and mesophyll cells. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer Academic Publishers, Dordrecht, pp 537–542

    Google Scholar 

  • Terashima I, Miyazawa SI, Hanba YT (2001) Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. J Plant Res 114:93–105

    Article  CAS  Google Scholar 

  • Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57:343–354

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Fujita T, Inoue T, Chow WS, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50:684–697

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Hanba YT, Tholen D, Niinemets U (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol 155:108–116

    Article  CAS  PubMed  Google Scholar 

  • Tholen D, Boom C, Noguchi K, Ueda S, Katase T, Terashima I (2008) The chloroplast avoidance response decreases internal conductance to CO2 diffusion in Arabidopsis thaliana leaves. Plant Cell Environ 31:1688–1700

    Article  CAS  PubMed  Google Scholar 

  • Tholen D, Boom C, Zhu X-G (2012a) Opinion: prospects for improving photosynthesis by altering leaf anatomy. Plant Sci 197:92–101

    Article  CAS  PubMed  Google Scholar 

  • Tholen D, Ethier G, Genty B, Pepin S, Zhu XG (2012b) Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ 35:2087–2103

    Article  CAS  PubMed  Google Scholar 

  • Tjaden B, Cooper SJ, Brett DJ, Kramer D, Shearing PR (2016) On the origin and application of the Bruggeman correlation for analysing transport phenomena in electrochemical systems. Curr Opin Chem Engineer 12:44–51

    Article  Google Scholar 

  • Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, . . . Niinemets Ü (2013) Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J Exp Bot 64: 2269—2281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tomás M, Medrano H, Brugnoli E, Escalona JM, Martorell S, Pou A et al (2014) Variability of mesophyll conductance in grapevine cultivars under water stress conditions in relation to leaf anatomy and water use efficiency. Aust J Grape Wine Res 20:272–280

    Article  CAS  Google Scholar 

  • Tosens T, Nishida K, Gago J, Coopman RE, Cabrera HM, Carriquí M et al (2016) The photosynthetic capacity in 35 ferns and fern allies: mesophyll CO2 diffusion as a key trait. New Phytol 209:1576–1590

    Article  CAS  PubMed  Google Scholar 

  • Tyree MT, Hammel HT (1972) Measurement of turgor pressure and water relations of plants by pressure-bomb technique. J Exp Bot 23:267–282

    Article  Google Scholar 

  • Vincent JFV (1982) The mechanical design of grass. J Mater Sci 17:856–860

    Article  Google Scholar 

  • Vitousek PM, Aplet G, Turner D, Lockwood JJ (1992) The Mauna Loa environmental matrix: foliar and soil nutrients. Oecologia 89:372–382

    Article  PubMed  Google Scholar 

  • Vogel S (2009) Leaves in the lowest and highest winds: temperature, force and shape. New Phytol 183:13–26

    Article  PubMed  Google Scholar 

  • Vogelmann TC (1993) Plant-tissue optics. Annu Rev Plant Physiol Plant Mol Biol 44:231–251

    Article  Google Scholar 

  • Vogelmann TC (1994) Light within the plant. In: Kendrick RE, Kronenberg GHM (eds) Photomorophogenesis in plants, 2nd edn. Kluwer Academic Publishers, Dordrecht, pp 491–535

    Chapter  Google Scholar 

  • Vogelmann TC, Björn LO (1984) Measurement of light gradients and spectral regime in plant tissue with a fiber optic probe. Physiol Plant 60:361–368

    Article  Google Scholar 

  • Vogelmann TC, Evans JR (2002) Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. Plant Cell Environ 25:1313–1323

    Article  Google Scholar 

  • Vogelmann TC, Martin G (1993) The functional significance of palisade tissue – penetration of directional versus diffuse light. Plant Cell Environ 16:65–72

    Article  Google Scholar 

  • Vogelmann TC, Nishio JN, Smith WK (1996) Leaves and light capture: Light propagation and gradients of carbon fixation within leaves. Trends Plant Sci 1:65–70

    Article  Google Scholar 

  • Voigt D, Gorb E, Gorb S (2007) Plant surface-bug interactions: Dicyphus errans stalking along trichomes. Arthropod-Plant Interact 1:221–243

    Article  Google Scholar 

  • Vyas P, Bisht MS, Miyazawa S, Yano S, Noguchi K, Terashima I, Funayama-Noguchi S (2007) Effects of polyploidy on photosynthetic properties and anatomy in leaves of Phlox drummondii. Funct Plant Biol 34:673–682

    Article  CAS  PubMed  Google Scholar 

  • Wada M (2013) Chloroplast movement. Plant Sci 210:177–182

    Article  CAS  PubMed  Google Scholar 

  • Wagner P, Furstner R, Barthlott W, Neinhuis C (2003) Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J Exp Bot 54:1295–1303

    Article  CAS  PubMed  Google Scholar 

  • Wagner G, Wang E, Shepherd R (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Noguchi K, Terashima I (2008) Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. Plant Cell Environ 31:1307–1316

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Huang W, Chen L, Ma L, Guo C, Liu X (2011) Anatomical and physiological plasticity in Leymus chinensis (Poaceae) along large-scale longitudinal gradient in Northeast China. PLoS One 6:e26209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren CR (2008) Stand aside stomata, another actor deserves centre stage: the forgotten role of the internal conductance to CO2 transfer. J Exp Bot 59:1475–1487

    Article  CAS  PubMed  Google Scholar 

  • Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35

    Article  Google Scholar 

  • Wiedemann P, Neinhuis C (1998) Biomechanics of isolated plant cuticles. Bot Acta 111:28–34

    Article  Google Scholar 

  • Wilkinson HP (1979) The plant surface (mainly leaf). In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons, vol 1, 2nd edn. Claredon Press, Oxford, pp 97–165

    Google Scholar 

  • Wilson GL (1966) Studies on the expansion of the leaf surface. V. Cell division and expansion in a developing leaf as influenced by light and upper leaves. J Exp Bot 17:440–451

    Article  Google Scholar 

  • Wilson J (1984) Microscopic features of wind damage to leaves of Acer pseudoplatanus L. Ann Bot 53:73–82

    Article  Google Scholar 

  • Woolley JT (1971) Reflectance and transmittance of light by leaves. Plant Physiol 47:656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright W, Illius AW (1995) A comparative study of the fracture properties of 5 grasses. Funct Ecol 9:269–278

    Article  Google Scholar 

  • Wright W, Vincent JFV (1996) Herbivory and the mechanics of fracture in plants. Biol Rev Cambridge Philos Soc 71:401–413

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M (2003) Least-cost input mixtures of water and nitrogen for photosynthesis. Am Nat 161:98–111

    PubMed  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S et al (2017) Global climatic drivers of leaf size. Science 357:917–921

    Article  CAS  PubMed  Google Scholar 

  • Wylie RB (1952) The bundle sheath extension in leaves of dicotyledons. Am J Bot 39:645–651

    Article  Google Scholar 

  • Xiao Y, Tholen D, Zhu XG (2016) The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model. J Exp Bot 67:6021–6035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong DL, Yu TT, Zhang T, Li Y, Peng SB, Huang JL (2015) Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza. J Exp Bot 66:741–748

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Yano S, Tsukaya H (2010) Genetic framework for flattened leaf blade formation in unifacial leaves of Juncus prismatocarpus. Plant Cell 22:2141–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano S, Terashima I (2001) Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation in Chenopodium album. Plant Cell Physiol 42:1303–1310

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-L, Zhang H-Z, Du M-W, Li W, Luo H-H, Chow W-S, Zhang W-F (2010) Leaf wilting movement can protect water-stressed cotton (Gossypium hirsutum L.) plants against photoinhibition of photosynthesis and maintain carbon assimilation in the field. J Plant Biol 53:52–60

    Article  Google Scholar 

  • Zsögön A, Negrini ACA, Peres LEP, Nguyen HT, Ball MC (2015) A mutation that eliminates bundle sheath extensions reduces leaf hydraulic conductance, stomatal conductance and assimilation rates in tomato (Solanum lycopersicum). New Phytolog 205:618–626

    Article  CAS  Google Scholar 

  • Zurzycki J (1955) The dependence of photosynthesis on the arrangement of chloroplasts. Experientia 11:263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Chieko Saito, Dr. Dagmar Voigt, Ms. Elinor Goodman, Dr. Margaret Barbour, Dr. Shinichi Miyazawa, Dr. Shinya Wada, Dr. Susanne Scheffknecht, Dr. Youshi Tazoe, and Dr. Xiaofeng Yin for their leaf anatomical photographs. We thank Dr. Chris Muir, Dr. Jaume Flexas, Ms. Natascha Luijken, and Dr. Thomas D. Sharkey for their helpful comments on the manuscript and Dr. Flexas and Dr. Muir for making available additional data on leaf anatomy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riichi Oguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oguchi, R., Onoda, Y., Terashima, I., Tholen, D. (2018). Leaf Anatomy and Function. In: Adams III, W., Terashima, I. (eds) The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-93594-2_5

Download citation

Publish with us

Policies and ethics