Skip to main content
Log in

Sequestration of plant pyrrolizidine alkaloids by chrysomelid beetles and selective transfer into the defensive secretions

  • Research papers
  • Published:
CHEMOECOLOGY Aims and scope Submit manuscript

Summary

Oreina cacaliae andO. speciosissima (Coleoptera, Chrysomelidae) sequester in their elytral and pronotal defensive secretions pyrrolizidine alkaloids (PAs) as Noxides (PA N-oxides). The PA N-oxide patterns found in the beetles and their host plants were evaluated qualitatively and quantitatively by capillary gas chromatography/mass spectrometry (GC-MS). Of the three host plantsAdenostyles alliariae (Asteraceae) is the exclusive source for PA N-oxide sequestration in the defensive secretions of the beetles. With the exception of O-acetylseneciphylline the N-oxides of all PAs ofA. alliariae, i.e. senecionine, seneciphylline, spartioidine, integerrimine, platyphylline and neoplatyphylline were identified in the secretion. PA N-oxides typical ofSenecio fuchsii (Asteraceae) were detected in the bodies of the beetles but not in their secretion. No PAs were found in the leaves of the third host plant,Petasites paradoxus (Asteraceae). The results suggest the existence of two distinctive storage compartments for PA N-oxides in the beetle: (1) the defensive secretion, containing specifically PA N-oxides acquired fromA. alliariae; (2) the body of the beetle, sequestering additionally but less selectively PA N-oxides from other sources,e.g. S. fuchsii or monocrotaline N-oxide fed in the laboratory. The concentration of PA N-oxides in the defensive secretion is in the range of 0.1 to 0.3 mol/1, which is more than 2.5 orders of magnitude higher than that found in the body of the beetle. No significant differences exist in the ability of the two species of beetles to sequester PA N-oxides fromA. alliariae, althoughO. speciosissima, but notO. cacaliae, produces autogenous cardenolides. A negative correlation seems to exist between the concentrations of plant-derived PA N-oxides andde novo synthesized cardenolides in the defensive secretion ofO. speciosissima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boppré M (1986) Insects pharmacophagously utilize defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26

    Google Scholar 

  • Boppré M (1990) Lepidoptera and pyrrolizidine alkaloids — exemplification of complexity in chemical ecology. J Chem Ecol 16:165–185

    Google Scholar 

  • Brower LP, Fink LS (1985) A natural toxic defense system: cardenolides in butterflies versus birds. Ann NY Acad Sci 443:171–188

    Google Scholar 

  • Deroe C, Pasteels JM (1982) Distribution of adult defense glands in the chrysomelids (Coleoptera: Chrysomelidae) and its significance in the evolution of defense mechanisms within the family. J Chem Ecol 8:67–82

    Google Scholar 

  • Ehmke A, Witte L, Biller A, Hartmann T (1990) Sequestration, N-oxidation and transformation of plant pyrrolizidine alkaloids by the arctiid mothTyria jacobaeae L.. Z Naturforsch 45c:1185–1192

    Google Scholar 

  • Ehmke A, von Borstel K, Hartmann T (1988) Alkaloid N-oxides as transport and vacuolar storage compounds of pyrrolizidine alkaloids inSenecio vulgaris L. Planta 176:83–90

    Google Scholar 

  • Hartmann T, Toppel G (1987) Senecionine N-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures ofSenecio vulgaris. Phytochemistry 26:1639–1643

    Google Scholar 

  • Hartmann T, Zimmer M (1986) Organ-specific distribution and accumulation of pyrrolizidine alkaloids during the life history of two annualSenecio species. J Plant Physiol 122:67–80

    Google Scholar 

  • Hartmann T, Ehmke A, Eilert U, von Borstel K, Theuring C (1989) Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloid N-oxides inSenecio vulgaris L.. Planta 177:98–107

    Google Scholar 

  • Hartmann T, Biller A, Witte L, Ernst L, Boppré M (1990) Transformation of plant pyrrolizidine alkaloids into novel insect alkaloids by arctiid moths (Lepidoptera). Biochem Syst Ecol 18:549–554

    Google Scholar 

  • Hegnauer R (1964) Chemotaxonomie der Pflanzen. Vol. 3. Basel: Birkhäuser

    Google Scholar 

  • Hegnauer R (1989) Chemotaxonomie der Pflanzen. Vol. 8. Basel: Birkhäuser

    Google Scholar 

  • Hirschmann GS, Jacopovic J (1988) Pyrrolizidine alkaloids fromSenecio deferens. Planta Med 54:360

    Google Scholar 

  • Kovats E (1958) Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chim Acta 42:1915–1932

    Google Scholar 

  • Lüthy J, Zweifel U, Schmid P, Schlatter C (1983) Pyrrolizidin-Alkaloide inPetasites hybridus L. undP. albus L.. Pharm Acta Helv 58:98–100

    Google Scholar 

  • Pasteels JM, Daloze D, van Dorsser W, Roba J (1979) Cardiac glycosides in the defensive secretion ofChrysolina herbacea (Coleoptera, Chrysomelidae). Identification, biological role and pharmacological activity. Comp Biochem Physiol 63:117–121

    Google Scholar 

  • Pasteels JM, Rowell-Rahier M, Randoux T, Braekman JC, Daloze D (1988a) Pyrrolizidine alkaloids of probable host-plant origin in the protonal and elytral secretion of the leaf beetleOreina cacaliae. Entomol Exp Appl 49:55–58

    Google Scholar 

  • Pasteels JM, Rowell-Rahier M, Raupp MJ (1988b) Plant-derived defense in chrysomelid beetles. Pp 235–272in Barbosa P, Letourneau D (eds) Novel Aspects of Insect-Plant Interactions. London: John Wiley & Sons

    Google Scholar 

  • Pasteels JM, Rowell-Rahier M, Braekman JC, Daloze D, Duffey S (1989) Evolution of exocrine chemical defense in leaf-beetles. Experientia 45:295–300

    Google Scholar 

  • Pasteels JM, Duffey S, Rowell-Rahier M (1990) Toxins in Chrysomelid beetles: possible evolutionary sequence from de novo synthesis to derivation from food plant chemicals. J Chem Ecol 16:211–222

    Google Scholar 

  • Röder E, Hille T, Wiedenfeld H (1986) Pyrrolizidin-Alkaloide vonSenecio sylvaticus. Scint Pharm 54:347–350

    Google Scholar 

  • Roitman JN (1983) The pyrrolizidine alkaloids ofSenecio triangularis Aust J Chem 36:1203–1213

    Google Scholar 

  • Schmid P, Lüthy J, Zweifel U, Bettschart A, Schlatter C (1987) GC/MS Characterization of pyrrolizidine alkaloids in some species of Asteraceae. Mitt Gebiete Lebensm Hyg 78:208–216

    Google Scholar 

  • Schneider D (1987) The strange fate of pyrrolizidine alkaloids. Pp 123–142in Chapman RF, Bernays EA, Stoffolano JG (eds) Perspectives in Chemoreception and Behavior. New York: Springer Verlag

    Google Scholar 

  • Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) (1976) Flora Europaea. Vol 4. Cambridge: Cambridge University Press

    Google Scholar 

  • Toppel G, Witte L, Riebesehl B, von Borstel K, Hartmann T (1987) Alkaloid patterns and biosynthetic capacity of root cultures from some pyrrolizidine alkaloid producingSenecio species. Plant Cell Rep 6:466–469

    Google Scholar 

  • van Oycke S, Rendoux T, Braekman JC, Daloze D, Pasteels JM (1988) New cardenolide glycosides from the defence glands of chrysolinina beetles (Coleoptera: Chrysomelidae). Bull Soc Chim Belg 97:297–311

    Google Scholar 

  • von Borstel K, Witte L, Hartmann T (1989) Pyrrolizidine alkaloid patterns in populations ofSenecio vulgaris, S. vernalis and their hybrids. Phytochemistry 28:1635–1638

    Google Scholar 

  • von Nickisch-Rosenegk E, Schneider D, Wink M (1990) Time-course of pyrrolizidine alkaloid processing in the alkaloid expoiting arctiid moth,Creatonotos transiens. Z. Naturforsch 45c:881–894

    Google Scholar 

  • Wiedenfeld H, Röder E (1979) Das Pyrrolizidinalkaloid Senecionin ausSenecio fuchsii. Phytochemistry 18:1083–1084

    Google Scholar 

  • Wink M, Schneider D (1988) Carrier-mediated uptake of pyrrolizidine alkaloids in larvae of the aposematic and alkaloid-exploiting mothCreatonotos. Naturwissenschaften 75:524–525

    Google Scholar 

  • Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of pyrrolizidine alkaloids from plants via aphids to ladybirds. Naturwissenschaften 77:540–543

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowell-Rahier, M., Witte, L., Ehmke, A. et al. Sequestration of plant pyrrolizidine alkaloids by chrysomelid beetles and selective transfer into the defensive secretions. Chemoecology 2, 41–48 (1991). https://doi.org/10.1007/BF01240665

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01240665

Key words

Navigation