Skip to main content
Log in

Uptake and accumulation of B-group vitamers in Saccharomyces cerevisiae in ethanol-stat fed-batch culture

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The uptake and accumulation of the B-group vitamins thiamine, riboflavin, nicotinamide, pantothenic acid and pyridoxine in Saccharomyces cerevisiae was studied by gradually increasing the specific dosage of vitamins in an ethanol-stat fed-batch culture. Thiamine, nicotinamide, pantothenic acid, and pyridoxine were almost completely taken up at low vitamin dosages. Thiamine was determined to be the major accumulating form of vitamin B1 while most of the assimilated nicotinamide and pantothenic acid accumulated in cofactor forms. Despite the obvious uptake of pyridoxine, accumulation of B6 vitamers was not observed. In contrast with the other vitamins studied, riboflavin began accumulating in the culture medium immediately after vitamin addition was initiated. By the end of the experiment, the apparent uptake of all vitamins exceeded their accumulation in the cells. Variations in the growth rate of yeast at different vitamin dosages demonstrate the importance of balancing the vitamins in the media during cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bedalov A, Hirao M, Posakony J, Nelson M, Simon JA (2003) NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae. Mol Cell Biol 23:7044–7054

    Article  CAS  Google Scholar 

  • Belenky PA, Moga TG, Brenner C (2008) Saccharomyces cerevisiae YOR071C encodes the high affinity nicotinamide riboside transporter Nrt1. J Biol Chem 283:8075–8079

    Article  CAS  Google Scholar 

  • Belenky P, Stebins R, Bogan KL, Evans CR, Brenner C (2011) Nrt1 and Tna1-independent export of NAD+ precursor vitamins promotes NAD+ homeostasis and allows engineering of vitamin production. PLoS ONE 6:e19710

    Article  CAS  Google Scholar 

  • Eliot AC, Kirsch JF (2004) Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem 73:383–415

    Article  CAS  Google Scholar 

  • Enjo F, Nosaka K, Ogata M, Iwashima A, Nishimura H (1997) Isolation and characterization of a thiamin transport gene, THI10, from Saccharomyces cerevisiae. J Biol Chem 272:19165–19170

    Article  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    Article  CAS  Google Scholar 

  • Hall C, Dietrich FS (2007) The reacquisition of biotin prototrophy in Saccharomyces cerevisiae involved horizontal gene transfer, gene duplication and gene clustering. Genetics 177(4):2293–2307

    Article  CAS  Google Scholar 

  • Hälvin K, Paalme T, Nisamedtinov I (2013) Comparison of different extraction methods for simultaneous determination of B complex vitamins in nutritional yeast using LC/MS-TOF and stable isotope dilution assay. Anal Bioanal Chem 405:1213–1222

    Article  Google Scholar 

  • Iwashima A, Nishino H, Nose Y (1973) Carrier-mediated transport of thiamine in baker’s yeast. Biochim Biophys Acta 330:222–234

    Article  CAS  Google Scholar 

  • Kevvai K, Kütt ML, Nisamedtinov I, Paalme T (2014) Utilization of 15N-labelled yeast hydrolysate in Lactococcus lactis IL1403 culture indicates co-consumption of peptide-bound and free amino acids with simultaneous efflux of free amino acids. Antonie Van Leeuwenhoek. doi:10.1007/s10482-013-0103-2

    Google Scholar 

  • Leonian LH, Lilly VG (1942) The effect of vitamins on ten strains of Saccharomyces cerevisiae. Am J Bot 29:459–464

    Article  CAS  Google Scholar 

  • Li M, Petteys BJ, McClure JM, Valsakumar V, Bekiranov S, Frank EL, Smith JS (2010) Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1. Mol Cell Biol 30:3329–3341

    Article  CAS  Google Scholar 

  • Linnett PE, Walker J (1968) Biosynthesis of thiamine. Incorporation experiments with 14C-labelled substrates and with [15N]glycine in Saccharomyces cerevisiae. Biochem J 109:161–168

    CAS  Google Scholar 

  • Llorente B, Dujon B (2000) Transcriptional regulation of the Saccharomyces cerevisiae DAL5 gene family and identification of the high affinity nicotinic acid permease TNA1 (YGR260w). FEBS Lett 475:237–241

    Article  CAS  Google Scholar 

  • Mihhalevski A, Nisamedtinov I, Hälvin K, Ošeka A, Paalme T (2013) Stability of B-complex vitamins and dietary fiber during rye sourdough bread production. J Cereal Sci 57:30–38

    Article  CAS  Google Scholar 

  • Mojzita D, Hohmann S (2006) Pdc2 coordinates expression of the THI regulon in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 276(2):147–161

    Article  CAS  Google Scholar 

  • Nisamedtinov I, Kevvai K, Orumets K, Rautio JJ, Paalme T (2010) Glutathione accumulation in ethanol-stat fed-batch culture of Saccharomyces cerevisiae with a switch to cysteine feeding. Appl Microbiol Biotechnol 87:175–183

    Article  CAS  Google Scholar 

  • Nishimura H, Kawasaki Y, Nosaka K, Kaneko Y, Iwashima A (1991) A constitutive thiamine metabolism mutation, thi80, causing reduced thiamine pyrophosphokinase activity in Saccharomyces cerevisiae. J Bacteriol 173:2716–2719

    CAS  Google Scholar 

  • Nishimura H, Kawasaki Y, Kaneko Y, Nosaka K, Iwashima A (1992) A positive regulatory gene, THI3, is required for thiamine metabolism in Saccharomyces cerevisiae. J Bacteriol 174:4701–4706

    CAS  Google Scholar 

  • Nosaka K, Onozuka M, Konno H, Kawasaki Y, Nishimura H, Sano M, Akaji K (2005) Genetic regulation mediated by thiamin pyrophosphate-binding motif in Saccharomyces cerevisiae. Mol Microbiol 58:467–479

    Article  CAS  Google Scholar 

  • Okada H, Halvarson HO (1964) Uptake of α-thioethyl D-glucopyranoside by Saccharomyces cerevisiae I. The genetic control of facilitated diffusion and active transport. Biochim Biophys Acta 82:538–546

    Article  CAS  Google Scholar 

  • Oltmanns O, Bacher A (1972) Biosynthesis of Riboflavine in Saccharomyces cerevisiae: the role of genes RIB1 and RIB7. J Bacteriol 110:818–822

    CAS  Google Scholar 

  • Olzhausen J, Schubbe S, Schuller HJ (2009) Genetic analysis of coenzyme A biosynthesis in the yeast Saccharomyces cerevisiae: identification of a conditional mutation in the pantothenate kinase gene CAB1. Curr Genet 55(2):163–173

    Article  CAS  Google Scholar 

  • Perl M, Kearney EB, Singer TP (1976) Transport of riboflavin into yeast cells. J Biol Chem 251:3221–3228

    CAS  Google Scholar 

  • Reihl P, Stolz J (2005) The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae. J Biol Chem 280:39809–39817

    Article  CAS  Google Scholar 

  • Ruiz A, Gonzalez A, Munoz I, Serrano R, Abrie JA, Strauss E, Arino J (2009) Moonlighting proteins Hal3 and Vhs3 form a heteromeric PPCDC with Ykl088w in yeast CoA biosynthesis. Nat Chem Biol 5(12):920–928

    Article  CAS  Google Scholar 

  • Santos MA, García-Ramírez JJ, Revuelta JL (1995) Riboflavin Biosynthesis in Saccharomyces cerevisiae cloning, characterization, and expression of the RIB5 gene encoding riboflavin synthase. J Biol Chem 270:437–444

    Article  CAS  Google Scholar 

  • Seifar RM, Ras C, Deshmmukh AT, Bekers KM, Saurez-Mendez CA, da Cruz ALB, van Gulik WM, Hejinen JJ (2013) Quantitative analysis of intracellular coenzymes in Saccharomyces cerevisiae using ion pair reversed phase ultra high performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1311:115–120

    Article  CAS  Google Scholar 

  • Stolz J, Sauer N (1999) The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H1-pantothenate symporter. J Biol Chem 274:18747–18752

    Article  CAS  Google Scholar 

  • Stolz J, Vielreicher M (2003) Tpn1p, the plasma membrane vitamin B6 transporter of Saccharomyces cerevisiae. J Biol Chem 278:18990–18996

    Article  CAS  Google Scholar 

  • Tazuya K, Yamada K, Kumaoka H (1989) Incorporation of histidine into the pyrimidine moiety of thiamin in Saccharomyces cerevisiae. Biochim Biophys Acta 990:73–79

    Article  CAS  Google Scholar 

  • Tazuya K, Yamada K, Kumaoka H (1993) Pyridoxine is a precursor of the pyrimidine moiety of thiamin in Saccharomyces cerevisiae. Biochem Mol Biol Int 30:893–899

    CAS  Google Scholar 

  • Troy DB, Beringer P (2006) Remington: the science and practice of pharmacy. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Villas-Boas SG, Mas S, Akesson M, Smedsgaad J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24:613–646

    Article  CAS  Google Scholar 

  • White RL, Spenser ID (1979) Thiamin biosynthesis in Saccharomyces cerevisiae. Origin of carbon-2 of the thiazole moiety. Biochem J 179:315–325

    CAS  Google Scholar 

  • White RL, Spenser ID (1982) Thiamin biosynthesis in yeast. Origin of the five-carbon unit of the thiazole moiety. J Am Chem Soc 104:4934–4943

    Article  CAS  Google Scholar 

  • White WH, Gunyuzlu PL, Toyn JH (2001) Saccharomyces cerevisiae is capable of de Novo pantothenic acid biosynthesis involving a novel pathway of β-alanine production from spermine. J Biol Chem 276:10794–10800

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Regional Development Fund (project EU29994), institutional research funding IUT1927 of the Estonian Ministry of Education and Research and Estonian Science Foundation research grant ETF9189. The authors would like to thank Dr. David Schryer (University of Tartu) for critical revision of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Nisamedtinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paalme, T., Kevvai, K., Vilbaste, A. et al. Uptake and accumulation of B-group vitamers in Saccharomyces cerevisiae in ethanol-stat fed-batch culture. World J Microbiol Biotechnol 30, 2351–2359 (2014). https://doi.org/10.1007/s11274-014-1660-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1660-x

Keywords

Navigation