Skip to main content
Log in

Effect of exposure to 2,5-hexanediol in light or darkness on the retina of albino and pigmented rats. II. Electrophysiology

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Albino (Sprague-Dawley) and pigmented (Norwegian Brown) male rats were exposed to 2,5-hexanediol (H; 1%) in their drinking water for 5 or 8 weeks, respectively. Half of the rats of each strain were housed in light (average 30 cd/cm2 inside cage, 12 h/day); the other half was kept in constant darkness. Control groups were studied in parallel under identical conditions but without H. Electrophysiological recordings were made 2–5 days and 13 weeks after the end of the exposure to H. Alterations in the visual system, as measured by electroretinography and visual evoked response, were found in groups of albino rats exposed to H and/or light. The pupillary diameter was enlarged in the albino group exposed to both H and light. Among the pigmented rats, alterations were recorded only in the visual evoked response of the H exposed groups. The results demonstrate that simultaneous exposure to H and light can lead to alterations in visual function that are more severe than those induced by each agent alone, and may exceed a simple summation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Rahman MS, Saladin JJ, Bohman CE, Couri D (1978) The effect of 2-hexanone and 2-hexanone metabolites on pupillomotor activity and growth. Am Ind Hyg Assoc J 39: 94–99

    PubMed  Google Scholar 

  • Altenkirch H, Mager J, Stoltenburg G, Helmbrecht J (1977) Toxic polyneuropathies after sniffing a glue thinner. J Neurol 214: 137–152

    PubMed  Google Scholar 

  • Altenkirch H, Wagner HM, Stoltenburg-Didinger G, Steppat R (1982) Potentiation of hexacarbon-neurotoxicity by methyl-ethyl-ketone (MEK) and other substances: clinical and experimental aspects. Neurobehav Toxicol Teratol 4: 623–627

    PubMed  Google Scholar 

  • Blain L, Mergler D (1986) La dyschromatopsie chez des personnes exposées professionnellement aux solvants organiques. J Fr Ophthalmol 9: 127–133

    Google Scholar 

  • Boekelheide K (1987) 2,5-Hexanedione alters microtubule assembly. I. Testicular atrophy, not nervous system toxicity, correlates with enhanced tubulin polymerization. Toxicol Appl Pharmacol 88: 370–382

    Article  PubMed  Google Scholar 

  • Boekelheide K, Neely MD, Sioussat TM (1989) The Sertoli cell cytoskeleton: a target for toxicant-induced germ cell loss. Toxicol Appl Pharmacol 101: 373–389

    Article  PubMed  Google Scholar 

  • Bäckström B, Collins VP (1987) Cytoskeletal changes in axons of rats exposed to 2,5-hexanediol, demonstrated using monoclonal antibodies. Neurotoxicology 8: 85–96

    PubMed  Google Scholar 

  • Bäckström B, Dumanski JP, Collins VP (1990) The effects of 2,5-hexanedione on the retina of albino rats. Neurotoxicology 11: 47–56

    PubMed  Google Scholar 

  • Bäckström B, Nylén P, Hagman M, Johnson A-C, Höglund G, Collins VP (1993) Effect of exposure to 2,5-hexanediol in light or darkness on the retina of albino and pigmented rats. I. Morphology. Arch Toxicol 67: 277–283

    PubMed  Google Scholar 

  • Chaitin MH, Burnside B (1989) Actin filament polarity at the site of rod outer segment disc morphogenesis. Invest Ophthalmol Vis Sci 30: 2461–2469

    PubMed  Google Scholar 

  • Chang YC (1990) Patients withn-hexane induced polyneuropathy: a clinical follow up. Br J Ind Med 47: 485–489

    PubMed  Google Scholar 

  • Cody RP, Smith JK (1987) Applied statistics and the SAS programming language, 2nd edn. Elsevier Science Publishing Co, New York

    Google Scholar 

  • Gobba F, Galassi C, Imbriani M, Ghittori S, Candela S, Cavalleri A (1991) Acquired dyschromatopsia among styrene-exposed workers. J Occup Med 33: 761–765

    PubMed  Google Scholar 

  • Hansson HA (1970) Ultrastructural studies on rat retina damaged by visible light. Virchows Arch Abt B, Zellpathol 6: 247–262

    Google Scholar 

  • Hebel R, Stromberg MW (1986) Anatomy and embryology of the laboratory rat. BioMed Verlag, Wörthsee, pp 218–223

    Google Scholar 

  • Hennekes R (1989) Klinische Elektroretinographie. Fortschr Ophthalmol 86: 146–150

    PubMed  Google Scholar 

  • Herskowitz A, Ishii N, Schaumburg H (1971) V-hexane neuropathy. A syndrome occurring as a result of industrial exposure. N Engl J Med 285: 82–85

    PubMed  Google Scholar 

  • Hirata M (1990) Reduced conduction function in central nervous system by 2,5-hexanedione. Neurotoxicol Teratol 12: 623–626

    Article  PubMed  Google Scholar 

  • Jones HB, Cavanagh JB (1982a) The early evolution of neurofilamentous accumulations due to 2,5-hexanediol in the optic pathways of the rat. Neuropathol Appl Neurobiol 8: 289–301

    PubMed  Google Scholar 

  • Jones HB, Cavanagh JB (1982b) Recovery from 2,5-hexanediol intoxication of the retinotectal tract of the rat. An ultrastructural study. Acta Neuropathol 58: 286–290

    Article  PubMed  Google Scholar 

  • Mergler D, Blain L (1987) Assessing colour vision loss among solventexposed workers. Am J Ind Med 12: 195–203

    PubMed  Google Scholar 

  • Mergler D, Bélanger S, De Grosbois S, Vachon N (1988) Chromai focus of acquired chromatic discrimination loss and solvent exposure among printshop workers. Toxicology 49: 341–348

    Article  PubMed  Google Scholar 

  • Monaco S, Wongmongkolrit T, Shearson CM, Patton A, Schaetzle B, Autilio-Gambetti L, Gambetti P, Sayre LM (1990) Giant axonopathy characterized by intermediate location of axonal enlargements and acceleration of neurofilament transport. Brain Res 519: 73–81

    Article  PubMed  Google Scholar 

  • Neely M, Boekelheide K (1988) Sertoli cell processes have axoplasmic features: an ordered microtubule distribution and an abundant high molecular weight microtubule-associated protein (cytoplasmic dynein). J Cell Biol 107: 1767–1776

    Article  PubMed  Google Scholar 

  • Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Invest Ophthalmol 5: 450–473

    PubMed  Google Scholar 

  • Nylén P, Ebendal T, Eriksdotter-Nilsson M, Hansson T, Henschen A, Johnson A-C, Kronevi T, Kvist U, Sjöstrand NO, Höglund G, Olson L (1989) Testicular atrophy and loss of nerve growth factorimmunoreactive germ cell line in rats exposed to n-hexane and a protective effect of simultaneous exposure to toluene or xylene. Arch Toxicol 63: 296–307

    Article  PubMed  Google Scholar 

  • O'Donoghue JL, Krasavage WJ, Terhaar CJ (1978) Toxic effects of 2,5-hexanedione. Toxicol Appl Pharmacol 45: 269

    Google Scholar 

  • Pasternak T, Flood DG, Eskin TA, Merigan WH (1985) Selective damage to large cells in the cat retinogeniculate pathway by 2,5-hexanedione. J Neurosci 5: 1641–1652

    PubMed  Google Scholar 

  • Paulson G, Waylonis G (1976) Polyneuropathy due to n-hexane. Arch Int Med 136: 880–882

    Article  Google Scholar 

  • Pecci Saavedra J, Pellegrino de Iraldi A (1976) Retinal alterations induced by continuous light in immature rats. I. Fine structure and electroretinography. Cell Tissue Res 166: 201–211

    PubMed  Google Scholar 

  • Raitta C, Seppäläinen AM, Huuskonen MS (1978) N-hexane maculopathy in industrial workers. Albrecht von Graefes Arch Klin Exp Ophthalmol 209: 99–110

    Article  PubMed  Google Scholar 

  • Rapp LM, Williams TP (1979) Damage to the albino rat retina produced by low intensity light. Photochem Photobiol 29: 731–733

    PubMed  Google Scholar 

  • Rapp LM, Williams TP (1980) The role of ocular pigmentation in protecting against retinal light damage. Vision Res 20: 1127–1131

    Article  PubMed  Google Scholar 

  • Rebert CS, Sorenson SS (1983) Concentration-related effects of hexane on evoked responses from brain and peripheral nerve of the rat. Neurobehav Toxicol Teratol 5: 69–76

    PubMed  Google Scholar 

  • Reuter JH, Hobbelen JF (1977) The effect of continuous light exposure on the retina in albino and pigmented rats. Physiol Behav 18: 939–944

    Article  PubMed  Google Scholar 

  • Seppäläinen AM, Raitta C, Huuskonen MS (1979) Hexane induced changes in visual evoked potentials and electroretinograms of industrial workers. EEG Clin Neurophysiol 47: 492–498

    Article  Google Scholar 

  • Spencer PS, Schaumburg HH, Sabri MI, Veronesi B (1980) The enlarging view of hexacarbon neurotoxicity. CRC Crit Rev Toxicol 7: 279–356

    Google Scholar 

  • Teir H (1988) An ophthalmological study on workers with long-term occupational exposure to industrial solvents. Accademic dissertion from the Department of Ophthalmology, University of Helsinki, Helsinki

    Google Scholar 

  • Wang JD, Chang YC, Kao KP, Huang CC, Lin CC, Yeh WY (1986) An outbreak ofn-hexane induced polyneuropathy among press proofing workers in Taipei. Am J Ind Med 10: 111–118

    PubMed  Google Scholar 

  • Williams RA, Howard AG, Williams TP (1985) Retinal damage in pigmented and albino rats exposed to low levels of cyclic light following a single mydriatic treatment. Curr Eye Res 4: 97–102

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nylén, P., Bäckström, B., Hagman, M. et al. Effect of exposure to 2,5-hexanediol in light or darkness on the retina of albino and pigmented rats. II. Electrophysiology. Arch Toxicol 67, 435–441 (1993). https://doi.org/10.1007/BF01977406

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01977406

Key words

Navigation