Skip to main content
Log in

Inhibition of anion permeability by amphiphilic compounds in human red cell: Evidence for an interaction of niflumic acid with the band 3 protein

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In human erythrocyte, permeability to the anion is instantaneously, reversibly, and noncompetitively inhibited by the nonsteroidal anti-inflammatory drug, niflumic acid. The active form of this powerful inhibitor (I 50=6×10−7 m) is the ionic form. We demonstrated that: (i) The binding of niflumic acid to the membrane of unsealed ghosts shows one saturable and one linear component over the concentration range studied. The saturable component vanishes when chloride transport is fully inhibited by covalently bound 4-acetamido-4′-isothiocyano stilbene-2,2′-disulfonic acid (SITS). Our estimate of these SITS protectable niflumate binding sites (about 9×105 per cell) agrees with the number of protein molecules per cell in band 3. These sites are halfsaturated with 10−6 m niflumic acid, a concentration very close toI 50. (ii) Niflumic acid inhibits the binding reaction of SITS with anion controlling transport sites. These results indicate that niflumic acid and SITS are mutually exclusive inhibitors, suggesting that niflumic acid interacts with the protein in band 3.

Niflumic acid also decreases glucose and ouabain-insensitive sodium permeabilities. However, these effects are produced at a very high concentration of niflumic acid (in millimolar range), suggesting unspecific action, possibly through lipid phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O.S., Finkelstein, A., Katz, I., Cass, A. 1976. Effect of phloretin on the permeability of thin lipid membranes.J. Gen. Physiol. 67:749

    PubMed  Google Scholar 

  • Avruch, J., Fairbanks, G. 1972. Demonstration of a phosphopeptide intermediate in the Mg++ dependent Na+ and K+ stimulated adenosine triphosphatase reaction of the erythrocyte membrane.Proc. Nat. Acad. Sci. USA 69:1216

    PubMed  Google Scholar 

  • Bate-Smith, E.C., Westall, R.G. 1950. Chromatographic behaviour and chemical structure. I. Some naturally occuring phenolic substances.Biochim. Biophys. Acta 4:427

    Google Scholar 

  • Brazy, P.C., Gunn, R.B. 1976. Furosemide inhibition of chloride transport in human red blood cells.J. Gen. Physiol. 68:583

    PubMed  Google Scholar 

  • Brown, P.A., Feinstein, M.B., Sha'afi, R.I. 1975. Membrane proteins related to water transport in human erythrocytes.Nature New Biol. 254:523

    Google Scholar 

  • Cabantchick, Z.I., Balshin, H., Breuer, W., Markus, H., Rothstein, A. 1975. A comparison of intact red blood cells and resealed and leaky ghosts with respect to their interactions with surface labelling agents and proteolytic enzymes.Biochim. Biophys. Acta 382:621

    PubMed  Google Scholar 

  • Cabantchik, Z.I., Rothstein, A. 1972. The nature of the membrane site controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives.J. Membrane Biol. 10:311

    Google Scholar 

  • Cabantchik, Z.I., Rothstein, A. 1974. Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilbene binding sites in proteins involved in permeation.J. Membrane Biol. 15:207

    Google Scholar 

  • Cass, A., Dalmark, M. 1973. Equilibrium dialysis of ions in nystatin-treated red cells.Nature New Biol. 244:47

    PubMed  Google Scholar 

  • Cousin, J.L., Motais, R. 1976. The role of carbonic anhydrase inhibitors on anion permeability into ox red blood cells.J. Physiol. (London) 256:61

    Google Scholar 

  • Cousin, J.L., Motais, R. 1978. Effect of phloretin on chloride permeability: A structureactivity study.Biochim. Biophys. Acta 507:531

    Google Scholar 

  • Dalmark, M. 1976. Effects of halides and bicarbonate on chloride transport in human red blood cells.J. Gen. Physiol. 67:223

    PubMed  Google Scholar 

  • Dalmark, M., Wieth, J.O. 1972. Temperature dependence of chloride, bromide, iodide thiocyanate and salicylate transport in human red cells.J. Physiol. (London) 224:583

    Google Scholar 

  • Deuticke, B. 1967. Über die Kinetik der Phosphat-Permeation in den Menschen-Erythrozyten bei Variation von extrazellularer Phosphat-Konzentration Anionen-Milien und Zell-volumen.Pfluegers Arch. gesamte Physiol. 296:21

    Google Scholar 

  • Deuticke, B. 1970. Anion permeability in the red blood cell.Naturwissenschaften 4:172

    Google Scholar 

  • Deuticke, B., Rickert, I., Beyer, E. 1978. Stereoselective, SH-dependent transfer of lactate in mammalian erythrocytes.Biochim. Biophys. Acta 507:137

    PubMed  Google Scholar 

  • Dodge, J.T., Mitchell, C., Hanahan, D. 1963. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes.Arch. Biochem. Biophys. 100:119

    PubMed  Google Scholar 

  • Dunn, H.J. 1970. The effects of transport inhibitors on sodium outflux and influx in red blood cells: Evidence for exchange diffusion.J. Clin. Invest. 49:1804

    PubMed  Google Scholar 

  • Dunn, H.J. 1972. Ouabain-unhibited Na+ transport in human erythrocytes: The effects of triflocin.Biochim. Biophys. Acta 255:567

    PubMed  Google Scholar 

  • Fairbanks, G., Steck, T.L., Wallach, D.F.H. 1971. Electrophoretic analysis of the major polypeptide of the human erythrocyte membrane.Biochemistry 10:2606

    PubMed  Google Scholar 

  • Fortes, P.A.G., Ellory, J.C. 1975. Asymmetric membrane expansion and modification of active and passive cation permeability of human red cells by the fluorescent probe 1-anilino-8-naphthalene sulfonate.Biochim. Biophys. Acta 413:65

    PubMed  Google Scholar 

  • Fortes, P.A.G., Hoffman, J.F. 1974. The interaction of fluorescent probes with anion permeability pathways of human red cells.J. Membrane Biol. 16:79

    Google Scholar 

  • Funder, J., Wieth, J.O. 1976. Chloride transport in human erythrocytes and ghosts: A quantitative comparison.J. Physiol. (London) 262:679

    Google Scholar 

  • Gunn, R.B., Tosteson, D.C. 1971. The effect of 2,4,6 trinitro-m cresol on cation and anion transport in sheep red blood cells.J. Gen. Physiol. 57:593

    PubMed  Google Scholar 

  • Halestrap, A.P. 1976. Transport of pyruvate and lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier.Biochem. J. 156:193

    PubMed  Google Scholar 

  • Ho, M.K., Guidotti, G. 1975. A membrane protein from human erythrocytes involved in anion exchange.J. Biol. Chem. 250:675

    PubMed  Google Scholar 

  • Hoffman, J.F., Kregenow, F.M. 1966. The characterisation of new energy dependent cation transport processes in red blood cells.Ann. N.Y. Acad. Sci. 137:566

    PubMed  Google Scholar 

  • Inglot, A.D., Wolna, E. 1968. Reactions of non-steroidal anti-inflammatory drugs with the erythrocyte membrane.Biochem. Pharmacol. 17:269

    Google Scholar 

  • Juliano, R.L. 1973. The proteins of the erythrocyte membrane.Biochim. Biophys. Acta 300:341

    PubMed  Google Scholar 

  • Kasahara, M., Hinkle, P.C. 1977. Reconstitution and purification of thed-glucose transporter from human erythrocytes.J. Biol. Chem. 252:7384

    PubMed  Google Scholar 

  • Lefevre, P.G. 1961. Sugar transport in the red blood cell: Structure activity relationship in substrates and antagonist.Pharmacol. Rev. 13:39

    PubMed  Google Scholar 

  • Lepke, S., Fasold, H., Pring, M., Passow, H. 1976. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4′-diisothiocyano stilbene-2,2′-disulfonic acid (DIDS) and its dihydro derivative (H2DIDS).J. Membrane Biol. 29:1471

    Google Scholar 

  • Lin, S., Spudich, H.A. 1975. Binding of cytochalosin B to a red cell membrane protein.Biochem. Biophys. Res. Commun. 61:1471

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.S., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265

    PubMed  Google Scholar 

  • Lubowitz, H., Whittam, R. 1969. Ion movements in human red cells independent of the sodium pump.J. Physiol. (London) 202:111

    Google Scholar 

  • McLaughlin, S. 1973. Salicylates and phospholipid bilayer membranes.Nature (London) 243:234

    Google Scholar 

  • Motais, R. 1977. Organic anion transport in red blood cells.In: Membrane Transport in Red Cells. J.C. Ellory and V.L. Lew, editors. pp. 197–220. Academic Press, London

    Google Scholar 

  • Motais, R., Cousin, J.L. 1976a. Mise en evidence d'un effet inhibiteur de l'acide éthacrynique sur la perméabilité au chlore.C.R. Acad. Sci. Paris 283:63

    Google Scholar 

  • Motais, R., Cousin, J.L. 1976b. Inhibitory effect of ethacrynic acid on chloride permeability.Am. J. Physiol. 231:1485

    PubMed  Google Scholar 

  • Motais, R., Cousin, J.L. 1977a. The inhibitory effect of amphiphilic compounds on chloride permeability in red blood cell. A structure-activity study.Proc. Int. Union Physiol. Sci. 13:530

    Google Scholar 

  • Motais, R., Cousin, J.L. 1977b. A structure-activity study of some drugs acting as reversible inhibitors of chloride permeability in red cell membranes: Influence of ring substituent.In: International Conference on Biological Membrane Drugs, Hormones and Membranes. L. Bolis and W. Straub, editors, pp. 219–225. Raven Press, Cranssur-Sierre

    Google Scholar 

  • Motais, R., Sola, F. 1973. Characteristics of a sulphydryl group essential for sodium exchange diffusion in beef erythrocytes.J. Physiol. (London) 233:423

    Google Scholar 

  • Motais, R., Sola, F., Cousin, J.L. 1978. Uncouplers of oxydative phosphorylation: A structure-activity study of their inhibitory effect on passive chloride permeability.Biochim. Biophys. Acta 51:201

    Google Scholar 

  • Passow, H., Fasold, H., Lepke, S., Pring, M., Schuhmann, B. 1977. Chemical and enzymatic modification of membrane proteins and anion transport in human red blood cells.In: Membrane Toxicity. M.W. Miller and A.E. Shamoo, editors. pp. 353–379. Plenum, New York

    Google Scholar 

  • Pinto da Silva, P. 1973. Membrane intercalated particules in human erythrocyte ghosts: sites of preferred passage of water molecules at low temperature.Proc. Nat. Acad. Sci. USA 70:1339

    PubMed  Google Scholar 

  • Rice, W.R., Steck, T.L. 1976. Pyruvate flux into resealed ghosts from human erythrocytes.Biochim. Biophys. Acta 433:39.

    PubMed  Google Scholar 

  • Rothstein, A., Cabantchick, Z.I., Knauf, P.A. 1976. Mechanism of anion transport in red blood cells: Role of membrane proteins.Fed. Proc. 35:3

    PubMed  Google Scholar 

  • Sachs, J.R. 1971. Ouabain insensitive sodium movements in human red blood cell.J. Gen. Physiol. 57:259

    PubMed  Google Scholar 

  • Scatchard, G. 1949. The attractions of proteins for small molecules and ions.Ann. N.Y. Acad. Sci. 51:660

    Google Scholar 

  • Schlenk, H., Gellerman, J.L. 1960. Esterification of fatty acids with diazomethane on a small scale.Analyt. Chem. 32:1412

    Google Scholar 

  • Schnell, K.F. 1972. On the mechanism of inhibition of sulfate transfer across the human erythrocyte membrane.Biochim. Biophys. Acta 282:265

    PubMed  Google Scholar 

  • Schnell, K.F., Passow, H. 1969. Chemical modifiers of passive ion permeability of the erythrocyte membrane.Experientia 25:460

    PubMed  Google Scholar 

  • Seeman, P. 1972. The membranes actions of anesthetics and transquilizers.Pharmacol. Rev. 24:583

    PubMed  Google Scholar 

  • Shami, Y., Rothstein, A., Knauf, P.A. 1978 Identification of the Cl-transport site of human red blood cells by the kinetic analysis of the inhibitory effect of a chemical probe.Biochim. Biophys. Acta 508:537

    Google Scholar 

  • Sheetz, M.P., Singer, S.J. 1974. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions.Proc. Nat. Acad. Sci. 71:4457

    PubMed  Google Scholar 

  • Ship, S., Shami, Y., Breuer, W., Rothstein, A. 1977. Synthesis of tritiated 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid ([3H]DIDS) and its covalent reaction with sites related to anion transport in human red blood cells.J. Membrane Biol. 33:311

    Google Scholar 

  • Steck, T.L. 1974. The organization of the proteins in human red blood cell membrne.J. Cell. Biol. 62:1

    PubMed  Google Scholar 

  • Taverna, R.D., Langdon, R.G. 1973.d glucosyl isothiocyanate, an affinity label for the glucose transport proteins of the human erythrocyte membrane.Biochem. Biophys. Res. Commun. 54:593

    PubMed  Google Scholar 

  • Wieth, J.O. 1970. Effect of some monovalent anions on chloride and sulphate permeability of human red cells.J. Physiol. (London) 207:581

    Google Scholar 

  • Wieth, J.O., Dalmark, M., Gunn, R.B., Tosteson, D.C. 1972. The transfer monovalent inorganic anions through the red cell membrane.In: Erythrocytes, Thrombocytes, Leucocytes. E. Gerlach, K. Moser, E. Deutsch and W. Wilmanns, editors. pp. 71–76. Thieme, Stuttgart

    Google Scholar 

  • Wieth, J.O., Funder, J., Gunn, R.B., Brahm, J. 1974. Passive transport pathways for chloride and urea through the red cell membrane.In: Comparative Biochemistry and Physiology of Transport. L. Bolis, K. Block, J.E. Luria and F. Pynen, editors. pp. 317–337 North-Holland, Amsterdam

    Google Scholar 

  • Zaki, L., Fasold, H., Schuhmann, B., Passow, H. 1975. Chemical modification of membrane proteins in relation to inhibition of anion exchange in human red blood cells.J. Cell. Physiol. 86:471

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cousin, J.L., Motais, R. Inhibition of anion permeability by amphiphilic compounds in human red cell: Evidence for an interaction of niflumic acid with the band 3 protein. J. Membrain Biol. 46, 125–153 (1979). https://doi.org/10.1007/BF01961377

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01961377

Keywords

Navigation