Skip to main content

Advertisement

Log in

Counter-flow suggests transport of dantrolene and 5-OH dantrolene by the organic anion transporters 2 (OAT2) and 3 (OAT3)

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 26 November 2016

Abstract

Dantrolene is the only available drug for the treatment of malignant hyperthermia, a life-threatening inborn sensitivity of the ryanodine receptor (RyR1) in skeletal muscles to volatile anesthetics. Dantrolene is metabolized in the liver to 5-OH dantrolene. Both compounds are zwitterions or net negatively charged. Here, we investigated interactions of dantrolene and 5-OH dantrolene with solute carrier (SLC) family members occurring in skeletal muscle cells, hepatocytes, and renal proximal tubule cells. SLC22A8 (organic anion transporter 3, OAT3) was very sensitive to both compounds exhibiting IC50 values of 0.35 ± 0.03 and 1.84 ± 0.34 μM, respectively. These IC50 concentrations are well below the plasma concentration in patients treated with dantrolene (3–28 μM). SLC22A7 (OAT2) was less sensitive to dantrolene and 5-OH dantrolene with IC50 values of 15.6 ± 2.1 and 15.8 ± 3.2 μM, respectively. SLCO1B1 (OATP1B1), SLCO1B3 (OATP1B3), and SLCO2B1 (OATP2B1) mainly interacted with 5-OH dantrolene albeit with higher IC50 values than those observed for OAT2 and OAT3. Dantrolene and 5-OH dantrolene failed to inhibit uptake of 1-methyl-4-phenylpyrimidinium (MPP) by OCT1 and of carnitine by OCTN2. In counter-flow experiments on OAT3, dantrolene and 5-OH dantrolene decreased pre-equilibrated cellular [3H]estrone-3-sulfate (ES) content as did the transported substrates glutarate, furosemide, and bumetanide. With OAT2, dantrolene and 5-OH dantrolene slightly decreased the pre-equilibrated [3H]cGMP content. If no other transporter markedly contributes to uptake or release of ES or cGMP, respectively, these data suggest that OAT3 and OAT2 may be involved in absorption, metabolism, and excretion of dantrolene and its metabolite 5-OH dantrolene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Badolo L, Rasmussen LM, Hansen HR, Sveigaard C (2010) Screening of OATP1B1/3 and OCT1 inhibitors in cryopreserved hepatocytes in suspension. Eur J Pharm Sci 40:283–288. doi:10.1016/j.ejps.2010.03.023

    Article  Google Scholar 

  2. Bleasby K, Castle JC, Roberts CJ, Cheng C, Bailey WJ, Sina JF, Kulkarni AV, Hafey MJ, Evers R, Johnson JM, Ulrich RG, Slatter JG (2006) Expression profiles of 50 xenobiotic transporter genes in human and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica 36:963–988. doi:10.1080/00498250600861751

    Article  CAS  PubMed  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  4. Breljak D, Ljubojevic M, Hagos Y, Micek V, Balen Eror D, Vrhovac Madunic I, Bzica H, Karaica D, Radovic N, Kraus O, Anzai N, Koepsell H, Burckhardt G, Burckhardt BC, Sabolic I (2016) Distribution of the organic anion transporters NaDC3 and OAT1-3 along the human nephron. Am J Phys 311:F227–F238. doi:10.1152/ajprenal.00113.2016

    CAS  Google Scholar 

  5. Burckhardt G (2012) Drug transport by organic anion transporters (OATs). Pharmacol Therapeut 136:106–130. doi:10.1016/jpharmthera.2012.07.010

    Article  CAS  Google Scholar 

  6. Cha SH, Sekine T, Fukushima J-I, Kanai Y, Kobayashi Y, Goya T, Endou H (2001) Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol Pharmacol 59:1277–1286. doi:10.1124/mol.59.5.1277

    CAS  PubMed  Google Scholar 

  7. Cheung L, Yu DMT, Neiron Z, Failes TW, Andt GM, Fletcher JI (2015) Identification of new MRP4 inhibitors from a library of FDA approved drugs using a high-throughput bioluminescence screen. Biochem Pharmacol 93:380–388. doi:10.1016/j.bcp.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  8. Cropp CD, Komori T, Shima JE, Urban TJ, Yee SW, More SS, Giacomini KM (2008) Organic anion transporter 2 (SLC22A7) is a facilitative transporter of cGMP. Mol Pharmacol 73:1151–1158. doi:10.1124/mol.107.043117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Enokizono J, Kusuhara H, Ose A, Schinkel AH, Sugiyama Y (2008) Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab Dis 36:995–1002. doi:10.1124/dmd.107.019257

    Article  CAS  Google Scholar 

  10. Giacomini KM, Huang S-M, Tweedie DJ et al (2010) Membrane transporters in drug development. Nature Rev Drug Discov 9:215–236. doi:10.1038/clpt.2009.236

    Article  CAS  Google Scholar 

  11. Hasannejad H, Takeda M, Taki K, Shin HJ, Babu E, Jutabha P, Khamdang S, Aleboyeh M, Onozato ML, Tojo A, Enomoto A, Anzai N, Narikawa S, Huang X-L, Niwa T, Endou H (2004) Interactions of human organic anion transporters with diuretics. J Pharmacol Exp Therapeut 308:1021–1029. doi:10.1124/jpet.103.059139

    Article  CAS  Google Scholar 

  12. Harper JN, Wight SH (2013) Multiple mechanisms of ligand interaction with the human organic cation transporter, OCT2. Am J Physiol Renal Physiol 304:F56–F67. doi:10.1038/clpt.2009.236

    Article  CAS  PubMed  Google Scholar 

  13. Hernandez-Ochoa EO, Pratt SJP, Lovering RM, Schneider MF (2016) Critical role of intracellular RyR1 calcium release channels in skeletal muscle function and disease. Front Physiol 6:420. doi:10.3389/fphys.2015.00420

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell A-L, Karlson J (2007) Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dis 35:1333–1340. doi:10.3389/fphys.2015.00420

    Article  CAS  Google Scholar 

  15. Just KS, Gerbershagen MU, Grensemann J, Wappler F (2015) Do we foresee new emerging drugs to treat malignant hyperthermia? Expert Opin Emerging Drugs 20:161–164. doi:10.1517/14728214.2015.1018178

    Article  CAS  Google Scholar 

  16. Kaufhold M, Schulz K, Breljak D, Gupta S, Henjakovic M, Krick W, Hagos Y, Sabolic I, Burckhardt BC, Burckhardt G (2011) Differential interaction of dicarboxylates with human sodium-dicarboxylate cotransporter 3 and organic anion transporters 1 and 3. Am J Physiol Renal Physiol 301:F1026–F1034. doi:10.1152/ajprenal.00169.2011

    Article  CAS  PubMed  Google Scholar 

  17. Klingler W, Heiderich S, Girad T, Gravino E, Heffron JJA, Johannsen S, Jurkat-Rott K, Rüffert H, Schuster F, Snoeck M, Sorrentino V, Tegazin V, Lehmann-Horn F (2014) Functional and genetic characterization of clinical malignant hyperthermia crises: a multi-centre study. Orphanet J Rare Dis 9:8. doi:10.1186/1750-1172-9-8

    Article  PubMed  PubMed Central  Google Scholar 

  18. Krause T, Gebershagen MU, Fiege M, Weißhorn R, Wappler F (2004) Dantrolene—a review of ist pharmacology, therapeutic use and new developments. Anaesthesia 59:364–373. doi:10.1186/1750-1172-9-8

    Article  CAS  PubMed  Google Scholar 

  19. Otero-Romero S, Sastre-Garriga J, Comi G, Hartung H-P, Soelberg-Sorensen P, Thompson AJ, Vermersch P, Gold R, Montalban X (2016) Pharmacological management of spasticity in multiple sclerosis: systemic review and consensus paper. Multiple Sclerosis Journal doi. doi:10.1177/1352458516643600

    Google Scholar 

  20. Pelis RM, Wright SH (2011) Renal transport of organic anions and cations. Compr Physiol 1:1795–1835. doi:10.1002/cphy.c100084

    PubMed  Google Scholar 

  21. Podranski T, Bouillon SPM, Taguchi A, Sessler DI, Kurz A (2005) Compartmental pharmacokinetics of dantrolene in adults: do malignant hyperthermia association dosing guidelines work? Anesth Analg 101:1695–1699. doi:10.1002/cphy.c100084

    Article  CAS  PubMed  Google Scholar 

  22. Rosenberg H, Pollock N, Schiemann A, Bulger T, Stowell K (2015) Malignant hyperhermia: a review. Orphanet J Rare Dis 10:93. doi:10.1002/cphy.c100084

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schneiderbanger D, Johannsen S, Roewer N, Schuster F (2014) Management of malignant hyperthermia: diagnosis and treatment. Therapeut Clin Risk Management 10:355–362. doi:10.2147/TCRM.S47632

    CAS  Google Scholar 

  24. Stieger B, Hagenbuch B (2014) Organic anion transporting polypeptides. Curr Top Membr 73:205–232. doi:10.1016/B978-0-12-800223-0.00005-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takeda M, Noshiro R, Onozato ML, Tojo A, Hasannejad H, Huang X-L, Narikawa S, Endou H (2004) Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors. Europ J Pharmacol 483:133–138. doi:10.1016/j.ejpharm.2003.10.017

    Article  CAS  Google Scholar 

  26. Vallner JJ, Sternson LA, Parsons DL (1976) Interaction of dantrolene sodium with human serum albumin. J Pharmaceut Sci 65:873–877. doi:10.1002/jps.2600650618

    Article  CAS  Google Scholar 

  27. VanWert AL, Gionfriddo MR, Sweet DH (2010) Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos 31:1–71. doi:10.1002/bdd.693

    CAS  PubMed  Google Scholar 

  28. www.ryanodex.com/about/clinical-pharmacology

Download references

Acknowledgements

The authors wish to thank Andrea Paluschkiwitz and Sören Petzke for skillful technical assistance and Saskia Flörl, Kathrin Hannke, and Annett Kühne for the transfection of HEK293 cells with the respective transporters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitta C. Burckhardt.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00424-016-1910-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burckhardt, B.C., Henjakovic, M., Hagos, Y. et al. Counter-flow suggests transport of dantrolene and 5-OH dantrolene by the organic anion transporters 2 (OAT2) and 3 (OAT3). Pflugers Arch - Eur J Physiol 468, 1909–1918 (2016). https://doi.org/10.1007/s00424-016-1894-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1894-6

Keywords

Navigation