Skip to main content
Log in

Effect of adenosine and AICAR on ATP content and regional contractile function in reperfused canine myocardium

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

We investigated whether the postischemic acceleration of adenosine triphosphate (ATP) synthesis by means of precursor infusion is beneficial for the contractile function of reperfused myocardium. A coronary artery was occluded for 45 min in 21 dogs to produce a marked but reversible ischemia. During the following 3 hours of reperfusion either adenosine (n=6) or AICAR (5-amino-imidazole-4-carboxamide-riboside) (n=6) was infused intracoronarily by a small transfemoral catheter positioned in the LAD. ATP repletion by adenosine was nearly 50% of the deficit caused by the previous ischemia, the effect of AICAR on steady-state tissue ATP concentration was insignificant. Regional systolic function of these both groups was compared to that of a control group (n=9) receiving only a saline infusion. We measured the regional function by subendocardially implanted ultrasound transducers using the transit time method. All three groups showed a reduction to about 25% of the initial segment shortening at the end of ischemia, followed by a quick recovery to half of the preocclusion segment shortening after reopening of the vessel. No further changes were observed in the control series during the 3 hours of reperfusion (50±10% SE segment shortening at the end). With adenosine infusion-in spite of the resulting considerable ATP elevation — no significant change of segmental contractile function occurred (44±5% SE segment shortening). Only the AICAR treated group differed from control. It produced a continuous deterioration during reflow resulting in a holosystolic bulging of −20%±10% SE at the end of 3 hours of reperfusion.

Our results show that there is no correlation between different ATP tissue levels achieved by adenosine infusion and systolic function in reperfused myocardium after regional reversible ischemia. We hypothesize that reperfusion dyskinesia is caused by a failure of energy utilisation rather than of energy supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banka VS, Bodenheimer MM, Helfant RH (1976) Effect of nitroprusside on local contractile performance after coronary ligation and reperfusion. Am J Cardiol 37:544

    Article  PubMed  Google Scholar 

  2. Belle van H (1969) Uptake and deamination of adenosine by blood-species differences, effect of pH, ions, temperature and metabolic inhibitors. Biochim Biophys Acta 192:124–132

    PubMed  Google Scholar 

  3. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary flow. Am J Physiol 204:317–322

    PubMed  Google Scholar 

  4. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149

    PubMed  Google Scholar 

  5. Bretschneider HJ, Cott, LA, Hensel, I, Kettler D, Martel J (1970) Ein neuer komplexer hämodynamischer Parameter aus 5 additiven Gliedern zur Bestimmung des O2-Bedarfs des linken Ventrikels. Pflügers Arch ges Physiol 319:14

    Google Scholar 

  6. Burdette WJ (1956) Adenosine nucleotide levels in cardiac arrest. Am Heart J 52:193–197

    Article  PubMed  Google Scholar 

  7. Chang I (1938) Effect of asphyxia on the adenosine triphosphate content of the rabbit heart. Quart J Exp Physiol 28:3

    Google Scholar 

  8. DeBoer LWV, Ingwall JS, Kloner RA, Braunwald E (1980) Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc Natl Acad Sci USA 77:5471–5475

    PubMed  Google Scholar 

  9. Döring HJ, Kammermeier H (1961) Das Verhalten der energiereichen Phosphorverbindungen des Myokards bei unterschiedlichen Belastungsformen. Verh Dt Ges Kreislaufforschg 27:227–232

    Google Scholar 

  10. Edwards II CH, Rankin JS, McHale PA, Ling D, Anderson RW (1981) Effects of ischemia on left ventricular regional function in the conscious dog. Am J Physiol 240 (Heart Circ Physiol 9):H413-H420

    PubMed  Google Scholar 

  11. Ellis RJ, Gardner CR (1980) Determination of myocardial high-energy phosphates using bioluminescence. Anal Biochem 105:354–360

    Article  PubMed  Google Scholar 

  12. Foker JE, Einzig S, Wang T (1980) Adenosine metabolism and myocardial preservation. Consequences of adenosine catabolism on myocardial high-energy compounds and tissue blood flow. J Thorac Cardiovasc Surg 80:506–516

    PubMed  Google Scholar 

  13. Gerlach E, Deuticke B, Dreisbach RH (1963) Der Nukleotidabbau im Herzmuskel bei Sauerstoffmangel und seine mögliche Bedeutung für die Koronardurchblutung. Naturwissenschaft 50:228–229

    Article  Google Scholar 

  14. Giesen J, Müller R, Müller G, Kammermeier H (1980) Function and energy metabolism of isolated rat hearts as influenced by Sr++. Basic Res Cardiol 75:780–801

    Article  PubMed  Google Scholar 

  15. Glower DD, Hoffmeister M, Newton JR, Wolfe JA, Spratt JA, Tyson GS, Swain JL, Rankin JS (1983) Relationship between altered diastolic properties and systolic function after reversible ischemic injury. Circulation 68 (Suppl III):III-253

    PubMed  Google Scholar 

  16. Gudbjarnason S, Mathes P, Ravens KG (1970) Functional compartimentation of ATP and creatine phosphate in heart muscle. J Mol Cell Cardiol 1:325–339

    Article  PubMed  Google Scholar 

  17. Hagl S, Heimisch W, Meisner H, Erben R, Baum M, Mendler N (1977) The effect of hemodilution on regional myocardial function in the presence of coronary stenosis. Basic Res Cardiol 72:344–364

    PubMed  Google Scholar 

  18. Hearse DJ (1979) Oxygen deprivation and early myocardial contractile failure: A reassessment of the possible role of adenosine triphosphate. Am J Cardiol 44:1115–1121

    Article  PubMed  Google Scholar 

  19. Henderson JF (1978) Effects of nucleoside analogs on purine metabolism. Pharmac. Ther 2:751–769

    Google Scholar 

  20. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF (1975) Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 56:978–985

    PubMed  Google Scholar 

  21. Hoffmeister HM, Mauser M, Schaper W (1983) Purine nucleotide de novo synthesis in postischemic and normal perfused canine myocardium in vivo. J Mol Cell Cardiol 15 (Suppl 1): abstract 13

    Google Scholar 

  22. Isselhard W, Hinzen DH, Geppert E, Mäurer W (1970) Beeinflussung des post-asphyktischen Wiederaufbaus der Adeninnukleotide im Kaninchenherzen in vivo durch Substratangebot. Pflügers Arch 320:195–209

    Article  Google Scholar 

  23. Jacobus WE (1980) Myocardial energy transport: current concepts of the problem. In: Jacobus WE, Ingwall JS (eds) Heart Creatine Kinase. Williams and Wilkins, Baltimore London

    Google Scholar 

  24. Janssen PAJ (1961) Piritramide (R 3365), a potent analgesic with unusual chemical structure. J Pharm Pharmacol 13:513

    PubMed  Google Scholar 

  25. Kammermeier H, Schmidt P, Jüngling E (1982) Free energy change of ATP-hydrolysis: a causal factor of early hypocix failure of the myocardium? J Mol Cell Cardiol 14:267–277

    Article  PubMed  Google Scholar 

  26. Kanaide H, Yoshimura R, Makino N, Nakamura M (1982) Regional myocardial function and metabolism during acute coronary artery occlusion. Am J Physiol 242 (Heart Circ Physiol 11):H980-H989

    PubMed  Google Scholar 

  27. Katz AM (1977) Physiology of the Heart. Raven Press. New York

    Google Scholar 

  28. Klein HH, Puschmann S, Schaper J, Schaper W (1981) The mechanism of the tetrazolium reaction in identifying experimental myocardial infarction. Virchows Arch (Pathol Anat) 393:287–297

    Article  Google Scholar 

  29. Kloner RA, DeBoer LWV, Darsee JR, Ingwall JS, Hale S, Tumas J, Braunwald E (1981) Prolonged abnormalities of myocardium salvaged by reperfusion. Am J Physiol 241:H591-H599

    PubMed  Google Scholar 

  30. Kübler W, Katz AM (1977) Mechanism of early “pump” failure of the ischemic heart: Possible role of adenosine triphosphate depletion and inorganic phosphate accumulation. Am J Cardiol 40:467–471

    Article  PubMed  Google Scholar 

  31. Mauser M, Hoffmeister HM, Nienaber C, Schaper W (1983) Acceleration of postischemic myocardial ATP-synthesis. Comparison of radioactive incorporation of ribose, AICA-riboside (AICAR) and adenosine (ADO) in the dog. Circulation 68 (Suppl III):III-389

    PubMed  Google Scholar 

  32. Mauser M, Hoffmeister HM, Nienaber C, Schaper W (1984) Influence of ribose, adenosine and AICAR on the rate of myocardial tissue ATP synthesis during reperfusion after coronary artery occlusion in the dog. Circ Res: submitted

  33. Neely JR, Rovetto MJ, Whitmer JT, Morgan HE (1973) Effects of ischemia on function and metabolism of the isolated working rat heart. Am J Physiol 225:651–658

    PubMed  Google Scholar 

  34. Nees S, Gerbes AL, Gerlach E (1981) Isolation, identification, and continuous culture of coronary endothelial cells from guinea-pig hearts. Europ J Cell Biol 24:287–297

    PubMed  Google Scholar 

  35. Nishioka K, Jarmakain JM (1982) Effect of ischemia on mechanical function and high-energy phosphates in rabbit myocardium. Am J Physiol 242:H1077-H1083

    PubMed  Google Scholar 

  36. Ohara H, Kanaide H, Yoshimura R, Okada M, Nakamura M (1981) A protective effect of coenzyme Q10 on ischemia and reperfusion of the isolated perfused rat heart. J Mol Cell Cardiol 13:65–74

    Article  PubMed  Google Scholar 

  37. Pasque MK, Spray TL, Pellom GL, Trigt van P, Peyton RB, Currie WD, Wechsler AS (1982) Ribose-enhanced myocardial recovery following ischemia in the isolated working rat heart. J Thorac Cardiovasc Surg 83:390–398

    PubMed  Google Scholar 

  38. Reibel DK, Rovetto MJ (1978) Myocardial ATP synthesis and mechanical function following oxygen deficiency. Am J Physiol 234:H620-H624

    PubMed  Google Scholar 

  39. Reibel DK, Rovetto MJ (1979) Myocardial adenosinc salvage rates and restoration of ATP content following ischemia. Am J Physiol 237:H247-H252

    PubMed  Google Scholar 

  40. Reimer KA, Hill ML, Jennings RB (1981) Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 13:229–239

    Article  PubMed  Google Scholar 

  41. Sabina RL, Kernstine KH, Boyd RL, Holmes EW, Swan JL (1982) Metabolism of 5-Amino-4-imidazole carboxamide riboside in cardiac and skeletal muscle. J Biol Chem 257:10177–10183

    Google Scholar 

  42. Sasayama S, Osakada G, Takahashi M, Shimada T, Kawai C (1980) Modification of regional function of ischaemic myocardium by the alteration of arterial pressure in dogs. Cardiovasc Res 14:93–102

    Google Scholar 

  43. Schaper J, Mulch J, Winkler B, Schaper W (1979) Ultrastructural, functional, and biochemical criteria for estimation of reversibility of ischemic injury. A study of the effects of global ischemia on the isolated dog heart. J Mol Cell Cardiol 11:521–541

    PubMed  Google Scholar 

  44. Schaper J (1982) Personal communication

  45. Schaper J, Schäfer H, Winkler B (1984) Early microvasculature changes in dog myocardial hypertrophy. J Mol Cell Cardiol 16 (Suppl 2) 145, abstract

    Google Scholar 

  46. Schaper W, Remijsen P, Xhonneux R (1969) The size of myocardial infarction after experimental coronary artery ligation. Z Kreislaufforschg 58:904

    Google Scholar 

  47. Schaper W, Frenzel H, Hort W (1979) Experimental coronary artery occlusion. I. Measurement of infarct size. Basic Res Cardiol 74:46–53

    PubMed  Google Scholar 

  48. Schaper W, Hoffmeister HM, Mauser M (1984) Myocardial content of high energy phosphates during successive periods of ischemia. J Mol Cell Cardiol 16 (Suppl 2) 32, abstract

    Google Scholar 

  49. Schrader J (1981) Sites of action and production of adenosine in the heart. In: Burnstock G (ed) Purinergic Receptors. Chapman and Hall, London, pp 121–162

    Google Scholar 

  50. Swain JL, Hines JJ, Sabina RL, Holmes EW (1982) Accelerated repletion of ATP and GTP pools in postischemic canine myocardium using a precursor of purine de novo synthesis. Circ Res 51:102–105

    PubMed  Google Scholar 

  51. Tennant R, Wiggers C (1935) The effect of coronary occlusion on myocardial contraction. Am J Physiol 112:351–361

    Google Scholar 

  52. Vary TC, Angelakos ET, Schaffer SW (1979) Relationship between adenine nucleotide metabolism and irreversible ischemic tissue damage in isolated perfused rat heart. Circ Res 45:218–225

    PubMed  Google Scholar 

  53. Zimmer HG, Trendelenburg C, Kammermeier H, Gerlach E (1973) De-novo-synthesis of myocardial adenine nucleotides in the rat. Acceleration during recovery from oxygen deficiency. Circ Res 32:635–642

    PubMed  Google Scholar 

  54. Zimmermann T, Deeprose RD (1978) Metabolism of 5-amino-1-β-ribofuranosyl-imidazole-4-carboxamide and related five-membered heterocycles to 5′-triphosphates in human blood and L5178Y cells. Biochem Pharmacol 27:709–716

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Parts of the results were presented at the 56th Meeting of the American Heart Association, Anaheim, California, 1983, and at the 1st Symposion on Salvage of Myocardium via the Coronary Sinus, Vienna, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmeister, H.M., Mauser, M. & Schaper, W. Effect of adenosine and AICAR on ATP content and regional contractile function in reperfused canine myocardium. Basic Res Cardiol 80, 445–458 (1985). https://doi.org/10.1007/BF01908189

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01908189

Key words

Navigation