Skip to main content

Adenosine as an Endogenous Adaptive Cardiac Antihypertrophic and Antiremodelling Factor

  • Chapter
  • First Online:
Cardiac Adaptations

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 4))

Abstract

Adenosine, a product of adenine nucleotide catabolism, has been demonstrated to exert numerous effects on the cardiovascular system which are mediated by activation of various receptor subtypes. The primary adenosine receptor in the myocardium is the A1 subtype which is linked to Gi-mediated inhibition of adenylate cyclase, although both A2a/b and A3 receptors have also been identified. There is increasing evidence that endogenously produced adenosine represents an important negative regulator of the hypertrophic and remodeling processes which contribute to heart failure. An important initial observation linking adenosine to the heart failure process was the report that plasma levels of the nucleoside are elevated in patients with heart failure irrespective of causative factor. Moreover, the degree of elevation was dependent on the severity of heart failure according to New York Heart Association (NYHA) classification with the greatest increases (more than fivefold) observed in NYHA class IV patients. Experimental observations have shown a direct antihypertrophic effect of adenosine receptor agonists on cardiomyocytes, which appears to be mediated by multiple adenosine receptor subtypes through yet to be determined processes. Further evidence obtained from in vivo studies also demonstrates a salutary effect of adenosine in reversing ventricular remodeling following aortic coarctation in rats. In addition to direct effects of adenosine receptor activation, deficiency in ecto-5′-nucleotidase which catalyzes the conversion of extracellular 5′-AMP to adenosine, thus increasing extracellular adenosine production, increases the degree of cardiac hypertrophy following aortic banding. Thus, when experimental evidence is taken together, it can be postulated that endogenous adenosine functions to limit the hypertrophic and remodeling processes which contribute to the development of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wainwright CL, Parratt JR (1988) An antiarrhythmic effect of adenosine during myocardial ischaemia and reperfusion. Eur J Pharmacol 145:183–194

    Article  PubMed  CAS  Google Scholar 

  2. Norton ED, Jackson EK, Virmani R, Forman MB (1991) Effect of intravenous adenosine on myocardial reperfusion injury in a model with low myocardial collateral blood flow. Am Heart J 122:1283–1291

    Article  PubMed  CAS  Google Scholar 

  3. Norton ED, Jackson EK, Turner MB, Virmani R, Forman MB (1992) The effects of intravenous infusions of selective adenosine A1-receptor and A2-receptor agonists on myocardial reperfusion injury. Am Heart J 123:332–338

    Article  PubMed  CAS  Google Scholar 

  4. Tsuchida A, Miura T, Miki T, Shimamoto K, Isimura O (1992) Role of adenosine receptor activation in myocardial infarct size limitation by ischaemic preconditioning. Cardiovasc Res 26:456–461

    Article  PubMed  CAS  Google Scholar 

  5. Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA et al (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84:350–356

    Article  PubMed  CAS  Google Scholar 

  6. Thornton JD, Liu GS, Olsson RA, Downey JM (1992) Intravenous pretreatment with A1-selective adenosine analogues protects the heart against infarction. Circulation 85:659–665

    Article  PubMed  CAS  Google Scholar 

  7. Mullane K (1992) Myocardial preconditioning. Part of the adenosine revival. Circulation 85:845–847

    Article  PubMed  CAS  Google Scholar 

  8. Galinanes M, Hearse DJ (1992) Exogenous adenosine accelerates recovery of cardiac function and improves coronary flow after long-term hypothermic storage and transplantation. J Thorac Cardiovasc Surg 104:151–158

    PubMed  CAS  Google Scholar 

  9. Bolling SF, Groh MA, Mattson AM, Grinage RA, Gallagher KP (1992) Acadesine [AICA-riboside] improves postischemic cardiac recovery. Ann Thorac Surg 54:93–98

    Article  PubMed  CAS  Google Scholar 

  10. Collis MG (1983) Evidence for an A1-adenosine receptor in the guinea-pig atrium. Br J Pharmacol 78:207–212

    Article  PubMed  CAS  Google Scholar 

  11. Martens D, Lohse MJ, Rauch B, Schwabe U (1987) Pharmacological characterization of A1 adenosine receptors in isolated rat ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol 336:342–348

    Article  PubMed  CAS  Google Scholar 

  12. Romano FD, MacDonald SG, Dobson JG (1989) Adenosine receptor coupling to adenylate cyclase of rat ventricular myocyte membranes. Am J Physiol 257:H1088–H1095

    PubMed  CAS  Google Scholar 

  13. Xu D, Kong HY, Liang BT (1992) Expression and pharmacological characterization of a stimulatory subtype of adenosine receptor in fetal chick ventricular myocytes. Circ Res 70:56–65

    Article  PubMed  CAS  Google Scholar 

  14. Dennis D, Jacobson K, Belardinelli L (1992) Evidence of spare A1-adenosine receptors in guinea pig atrioventricular node. Am J Physiol 262:H661–H671

    PubMed  CAS  Google Scholar 

  15. Lerman BB, Belardinelli L (1991) Cardiac electrophysiology of adenosine. Basic and clinical concepts. Circulation 83:1499–1509

    Article  PubMed  CAS  Google Scholar 

  16. Tracey WR, Magee W, Masamune H, Oleynek JJ, Hill RJ (1998) Selective activation of adenosine A3 receptors with N6-[3-chlorobenzyl]-5′-N-methylcarboxamidoadenosine [CB-MECA] provides cardioprotection via KATP channel activation. Cardiovasc Res 40:138–145

    Article  PubMed  CAS  Google Scholar 

  17. Tracey WR, Magee W, Masamune H, Kennedy SP, Knight DR et al (1997) Selective adenosine A3 receptor stimulation reduces ischemic myocardial injury in the rabbit heart. Cardiovasc Res 33:410–415

    Article  PubMed  CAS  Google Scholar 

  18. Pang T, Gan XT, Freeman DJ, Cook MA, Karmazyn M (2010) Compensatory upregulation of the adenosine system following phenylephrine-induced hypertrophy in cultured rat ventricular myocytes. Am J Physiol Heart Circ Physiol 298:H545–H553

    Article  PubMed  CAS  Google Scholar 

  19. Xia Y, Rajapurohitam V, Cook MA, Karmazyn M (2004) Inhibition of phenylephrine induced hypertrophy in rat neonatal cardiomyocytes by the mitochondrial KATP channel opener diazoxide. J Mol Cell Cardiol 37:1063–1067

    Article  PubMed  CAS  Google Scholar 

  20. Grover GJ, Sleph PG, Dzwonczyk S (1990) Pharmacologic profile of cromakalim in the treatment of myocardial ischemia in isolated rat hearts and anesthetized dogs. J Cardiovasc Pharmacol 16:853–864

    Article  PubMed  CAS  Google Scholar 

  21. Grover GJ, Dzwonczyk S, Parham CS, Sleph PG (1990) The protective effects of cromakalim and pinacidil on reperfusion function and infarct size in isolated perfused rat hearts and anesthetized dogs. Cardiovasc Drugs Ther 4:465–474

    Article  PubMed  CAS  Google Scholar 

  22. Escande D, Cavero I (1992) K+ channel openers and ‘natural’ cardioprotection. Trends Pharmacol Sci 13:269–272

    Article  PubMed  CAS  Google Scholar 

  23. Gross GJ, Auchampach JA (1992) Blockade of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 70:223–233

    Article  PubMed  CAS  Google Scholar 

  24. Kirsch GE, Codina J, Birnbaumer L, Brown AM (1990) Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol 259:H820–H826

    PubMed  CAS  Google Scholar 

  25. Cohen MV, Baines CP, Downey JM (2000) Ischemic preconditioning: from adenosine receptor of KATP channel. Annu Rev Physiol 62:79–109

    Article  PubMed  CAS  Google Scholar 

  26. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD et al (2011) American heart association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics–2011 update: a report from the American heart association. Circulation, vol 123, pp e18–e209 (Erratum in Circulation, vol 123, p e240)

    Google Scholar 

  27. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367:356–367

    Article  PubMed  Google Scholar 

  28. Sun Y (2009) Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res 81:482–490

    Article  PubMed  CAS  Google Scholar 

  29. Frantz S, Bauersachs J, Ertl G (2009) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81:474–481

    Article  PubMed  CAS  Google Scholar 

  30. Javadov S, Karmazyn M (2007) Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem 20:1–22

    Article  PubMed  CAS  Google Scholar 

  31. Katz AM (2000) The hypertrophic response: programmed cell death. In: Heart failure. Pathophysiology, molecular biology, and clinical management. Lippincott Williams & Wilkins, Philadelphia, pp 173–226

    Google Scholar 

  32. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79

    Article  PubMed  CAS  Google Scholar 

  33. Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart: a new therapeutic target? Circulation 109:1580–1589

    Article  PubMed  Google Scholar 

  34. Hardt SE, Sadoshima J (2004) Negative regulators of cardiac hypertrophy. Cardiovasc Res 63:500–509

    Article  PubMed  CAS  Google Scholar 

  35. Funaya H, Kitakaze M, Node K, Minamino T, Komamura K et al (1997) Plasma adenosine levels increase in patients with chronic heart failure. Circulation 95:1363–1365

    Article  PubMed  CAS  Google Scholar 

  36. Kitakaze M, Minamino T, Node K, Koretsune Y, Komamura K et al (1998) Elevation of plasma adenosine levels may attenuate the severity of chronic heart failure. Cardiovasc Drugs Ther 12:307–309

    Article  PubMed  CAS  Google Scholar 

  37. Chung ES, Perlini S, Aurigemma GP, Fenton RA, Dobson JG et al (1998) Effects of chronic adenosine uptake blockade on adrenergic responsiveness and left ventricular chamber function in pressure overload hypertrophy in the rat. J Hypertens 16:1813–1822

    Google Scholar 

  38. Kitakaze M, Hori M (2000) Adenosine therapy: a new approach to chronic heart failure. Opin Investig Drugs 9:2519–2535

    Article  CAS  Google Scholar 

  39. Dubey RK, Gillespie DG, Jackson EK (1999) Adenosine inhibits collagen and total protein synthesis in vascular smooth muscle cells. Hypertension 33:190–194

    Article  PubMed  CAS  Google Scholar 

  40. Wakeno M, Minamino T, Seguchi O, Okazaki H, Tsukamoto O et al (2006) Long-term stimulation of adenosine A2b receptors begun after myocardial infarction prevents cardiac remodeling in rats. Circulation 114:1923–1932

    Article  PubMed  CAS  Google Scholar 

  41. Fassett JT, Xu X, Hu X, Zhu G, French J et al (2009) Adenosine regulation of microtubule dynamics in cardiac hypertrophy. Am J Physiol 297:H523–H532

    CAS  Google Scholar 

  42. Hoque N, Cook MA, Karmazyn M (2000) Inhibition of α1-adrenergic-mediated responses in rat ventricular myocytes by adenosine A1 receptor activation: role of the KATP channel. J Pharmacol Exp Ther 294:770–777

    PubMed  CAS  Google Scholar 

  43. Avkiran M, Yokoyama H (2000) Adenosine A1 receptor stimulation inhibits α1-adrenergic activation of the cardiac sarcolemmal Na+/H+ exchanger. Br J Pharmacol 131:659–662

    Article  PubMed  CAS  Google Scholar 

  44. Liao Y, Takashima S, Asano Y, Asakura M, Ogai A et al (2003) Activation of adenosine A1 receptor attenuates cardiac hypertrophy and prevents heart failure in murine left ventricular pressure-overload model. Circ Res 93:759–766

    Article  PubMed  CAS  Google Scholar 

  45. Gan XT, Rajapurohitam V, Haist JV, Chidiac P, Cook MA et al (2005) Inhibition of phenylephrine-induced cardiomyocyte hypertrophy by activation of multiple adenosine receptor subtypes. J Pharmacol Exp Ther 312:27–34

    Article  PubMed  CAS  Google Scholar 

  46. Chen Y, Bache RJ (2003) Adenosine: a modulator of the cardiac response to stress. Circ Res 93:691–693

    Article  PubMed  CAS  Google Scholar 

  47. Funakoshi H, Chan TO, Good JC, Libonati JR, Piuhola J et al (2006) Regulated overexpression of the A1-adenosine receptor in mice results in adverse but reversible changes in cardiac morphology and function. Circulation 114:2240–2250

    Article  PubMed  CAS  Google Scholar 

  48. Lu Z, Fassett J, Xu X, Hu X, Zhu G et al (2008) Adenosine A3 receptor deficiency exerts unanticipated protective effects on the pressure-overloaded left ventricle. Circulation 118:1713–1721

    Article  PubMed  CAS  Google Scholar 

  49. Xu X, Fassett J, Hu X, Zhu G, Lu Z et al (2008) Ecto-5′-nucleotidase deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction. Hypertension 51:1557–1564

    Article  PubMed  CAS  Google Scholar 

  50. Aras D, Topaloglu S, Demirkan B, Deveci B, Ozeke O et al (2006) Porcelain heart: a case of massive myocardial calcification. Int J Cardiovasc Imaging 22:123–126

    Article  PubMed  Google Scholar 

  51. Itoh E, Saitoh H, Miida T, Oda H, Toeda T et al (1997) An autopsied case of acute myocarditis with myocardial calcification. Jpn Circ J 61:798–802

    Article  PubMed  CAS  Google Scholar 

  52. Schellhammer F, Ansén S, Arnold G, Brochhagen HG, Lackner K (2002) Myocardial calcification following septic shock. Cardiology 98:102–103

    Article  PubMed  CAS  Google Scholar 

  53. Bloom S, Peric-Golia L (1989) Geographic variation in the incidence of myocardial calcification associated with acute myocardial infarction. Hum Pathol 20:726–731

    Article  PubMed  CAS  Google Scholar 

  54. Segura AM, Radovancevic R, Connelly JH, Loyalka P, Gregoric ID et al (2011) Endomyocardial nodular calcification as a cause of heart failure. Cardiovasc Pathol 20:e185–e188

    Article  PubMed  Google Scholar 

  55. Barnard DC, Pape L, Missri J, Dalen JE (1985) Massive myocardial calcification and normal coronary arteries. Tex Heart Inst J 12:363–365

    PubMed  CAS  Google Scholar 

  56. Trigo J, Camacho A, Gago P, Candeias R, Santos W et al (2010) Endomyocardial fibrosis with massive calcification of the left ventricle. Rev Port Cardiol 29:445–449

    PubMed  Google Scholar 

  57. Canesin MF, Gama RF, Smith DL, Kazuma FJ, Takiuchi A et al (1999) Endomyocardial fibrosis associated with massive calcification of the left ventricle. Arq Bras Cardio 73:499–506

    CAS  Google Scholar 

  58. Morrone LF, Moreira AE, Lopez M, Kajita LJ, Potério DI et al (1996) Endomyocardial fibrosis with massive biventricular endocardial calcification. Arq Bras Cardiol 67:103–105

    PubMed  CAS  Google Scholar 

  59. Rifai L, Hammoudi N, Fouret P, Acar C (2011) Massive calcification of the tricuspid valve papillary muscles in right ventricular endomyocardial fibrosis. Interact Cardiovasc Thorac Surg 12:505–506

    Article  PubMed  Google Scholar 

  60. Johnson RC, Leopold JA, Loscalzo J (2006) Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res 99:1044–1059

    Article  PubMed  CAS  Google Scholar 

  61. Hilaire SG, Ziegler T, Markello A, Brusco C, Groden F et al (2011) NT5E mutations and arterial calcifications. N Engl J Med 364:432–442

    Article  Google Scholar 

  62. Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for ecto-5′-nucleotidase (CD73). Purinergic Signal 2:351–360

    Article  PubMed  CAS  Google Scholar 

  63. Millán JL (2006) Alkaline phosphatases: structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2:335–341

    Article  PubMed  Google Scholar 

  64. Mota A, Silva P, Neves D, Lemos C, Calhau C et al (2008) Characterization of rat heart alkaline phosphatase isoenzymes and modulation of activity. Braz J Med Biol Res 41:600–609

    Article  PubMed  CAS  Google Scholar 

  65. Martins MJ, Azevedo I (2010) Let’s think in alkaline phosphatase at heart function. Int J Cardiol 144:333–334

    Article  PubMed  Google Scholar 

  66. Schultz-Hector S, Balz K, Böhm M, Ikehara Y, Rieke LJ (1993) Cellular localization of endothelial alkaline phosphatase reaction product and enzyme protein in the myocardium. Histochem Cytochem 41:1813–1821

    Article  CAS  Google Scholar 

  67. Nakagami H, Osako MK, Morishita R (2011) New concept of vascular calcification and metabolism. Curr Vasc Pharmacol 9:124–127

    Article  PubMed  CAS  Google Scholar 

  68. Koulaouzidis G, Henein M (2011) Coronary calcification and hormones. Angiology 62:554–564

    Article  PubMed  CAS  Google Scholar 

  69. Sinha S, Eddington H, Kalra PA (2009) Vascular calcification: lessons from scientific models. J Ren Care 35(1):51–56

    Article  PubMed  Google Scholar 

  70. Prosdocimo DA, Wyler SC, Romani AM, O’Neill WC, Dubyak GR (2010) Regulation of vascular smooth muscle cell calcification by extracellular pyrophosphate homeostasis: synergistic modulation by cyclic AMP and hyperphosphatemia. Am J Physiol Cell Physiol 298:C702–C713

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work from the authors’ laboratory was funded by the Canadian Institutes of Health Research and the Heart and Stroke Foundation of Ontario. M Karmazyn holds a Canada Research Chair (Tier 1) in Experimental Cardiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris Karmazyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karmazyn, M., Gan, X.T. (2013). Adenosine as an Endogenous Adaptive Cardiac Antihypertrophic and Antiremodelling Factor. In: Ostadal, B., Dhalla, N. (eds) Cardiac Adaptations. Advances in Biochemistry in Health and Disease, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5203-4_21

Download citation

Publish with us

Policies and ethics