Skip to main content
Log in

Apical sodium entry in split frog skin: Current-voltage relationship

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Apical Na+ entry into frog skin epithelium is widely presumed to be electrodiffusive in nature, as for other tight epithelia. However, in contrast to rabbit descending colon andNecturus urinary bladder, the constant field equation has been reported to fit the apical sodium current (N Na)-membrane potential (ψmc) relationship over only a narrow range of apical membrane potentials or to be inapplicable altogether. We have re-examined this issue by impaling split frog skins across the basolateral membrane and examining the current-voltage relationships at extremely early endpoints in time after initiating pulses of constant transepithelial voltage. In this study, the rapid transient responses in ψmc were completed within 0.5 to 3.5 msec. Using endpoints to 1 to 25 msec, the Goldman equation provided excellent fits of the data over large ranges in apical potential of 300 to 420 mV, from approximately −200 to about +145 mV (cell relative to mucosa). Split skins were also studied when superfused with high serosal K+ in order to determine whether theI Namc relationship could be generated purely by transepithelial measurements. Under these conditions, the basolateral membrane potential was found to be −10±3 mV (cell relative to serosa, mean±se), the basolateral fractional resistance was greater than zero, and the transepithelial current was markedly and reversibly reduced. For these reasons, use of high serosal K+ is considered inadvisable for determining theI Namc relationship, at least in those tissues (such as frog skin) where more direct measurements are technically feasible. Analysis of theI Namc relationships under baseline conditions provided estimates of intracellular Na+ concentration and of apical Na+ permeability of 9 to 14mm and of ∼3 × 10−7 cm · sec−1, respectively, in reasonable agreement with estimates obtained by different techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, C.M. 1975a. Evidence for ionic pores in excitable membranes.Biophys. J. 15:932–933

    PubMed  Google Scholar 

  • Armstrong, C.M. 1975b. Ionic pores, gates and gating currents.Q. Rev. Biophys. 7:179–210

    Google Scholar 

  • Benos, D.J., Hyde, B.A., Latorre, R. 1983. Sodium flux ratio through the amiloride-sensitive entry pathway in frog skin.J. Gen. Physiol. 81:667–685

    PubMed  Google Scholar 

  • Benz, R., McLaughlin, S. 1983. The molecular mechanism of action of the proton ionophore FCCP (carbonylcyanidep-trifluoromethoxyphenylhydrazone).Biophys. J. 41:381–398

    PubMed  Google Scholar 

  • Carasso, N., Favard, P., Jard, S., Rajerison, R.M. 1971. The isolated frog skin epithelium: I. Preparation and general structure in different physiological states.J. Microsc. (Paris) 10:315–330

    Google Scholar 

  • Civan, M.M. 1970. Effects of active sodium transport on current-voltage relationship of toad bladder.Am. J. Physiol. 219:234–245

    PubMed  Google Scholar 

  • Civan, M.M. 1983. Epithelial Ions and Transport: Application of Biophysical Techniques. Wiley, New York

    Google Scholar 

  • Civan, M.M., Bookman, R.J. 1982. Transepithelial Na+ transport and the intracellular fluids: A computer study.J. Membrane Biol. 65:63–80

    Google Scholar 

  • Civan, M.M., Peterson-Yantorno, K., DiBona, D.R., Wilson, D.F., Erecińska, M. 1983. Bioenergetics of Na+ transport across frog skin: Chemical and electrical measurements.Am. J. Physiol. 245:F691-F700

    PubMed  Google Scholar 

  • Cuthbert, A.W., Wilson, S.A. 1981. Mechanisms for the effects of acetylcholine on sodium transport in frog skin.J. Membrane Biol. 59:65–75

    Google Scholar 

  • DeLong, J., Civan, M.M. 1978. Dissociation of cellular K+ accumulation from net Na+ transport by toad urinary bladder.J. Membrane Biol. 42:19–43

    Google Scholar 

  • DeLong, J., Civan, M.M. 1983a. Microelectrode study of K+ accumulation by tight epithelia: I. Baseline values of split frog skin and toad urinary bladder.J. Membrane Biol. 72:183–193

    Google Scholar 

  • DeLong, J., Civan, M.M. 1983b. Microelectrode study of K+ accumulation by tight epithelia: II. Effect of inhibiting transpithelial Na+ transport on reaccumulation following depletion.J. Membrane Biol. 74:155–164

    Google Scholar 

  • Fisher, R.S., Erlij, D., Helman, S.I. 1980. Intracellular voltage of isolated epithelia of frog skin: Apical and basolateral cell punctures.J. Gen. Physiol. 76:447–453

    PubMed  Google Scholar 

  • Fromm, M., Schultz, S.G. 1981. Some properties of KCl-filled microelectrodes: Correlation of potassium “leakage” with tip resistance.J. Membrane Biol. 62:239–244

    Google Scholar 

  • Frömter, E., Higgins, J.T., Gebler, B. 1981. Electrical properties of amphibian urinary bladder epithelia. IV. The current-voltage relationship of the sodium channels in the apical cell membrane.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 31–45, Raven, New York

    Google Scholar 

  • Fuchs, W., Larsen, E.H., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37–60

    Google Scholar 

  • Helman, S.I. 1981. Electrical rectification of the sodium flux across the apical barrier of frog skin epithelium.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 15–30. Raven, New York

    Google Scholar 

  • Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571–604

    PubMed  Google Scholar 

  • Higgins, J.T., Jr., Gebler, B., Frömter, E. 1977. Electrical properties of amphibian urinary bladder epithelia. II. The cell potential profile inNecturus maculosus.Pfluegers Arch. 371:87–97

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308

    PubMed  Google Scholar 

  • Lew, V.L., Ferreira, H.G., Moura, T. 1979. The behaviour of transporting epithelial cells. I. Computer analysis of a basic model.Proc. R. Soc. London, B 206:53–83

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41–70

    Google Scholar 

  • Lewis, S.A., Wills, N.K., Eaton, D.C. 1978. Basolateral membrane potential of a tight epithelium: Ion diffusion and electrogenic pumps.J. Membrane Biol. 41:117–148

    Google Scholar 

  • Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone.J. Membrane Biol. 64:77–89

    Google Scholar 

  • Lichtenstein, N.S., Leaf, A. 1965. Effect of amphotericin B on the permeability of the toad bladder.J. Clin. Invest. 44:1328–1342

    PubMed  Google Scholar 

  • Lindemann, B., Van Driessche, W. 1977. Sodium specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195:292–294

    PubMed  Google Scholar 

  • Nagel, W. 1977. Effect of high K upon the frog skin intracellular potential.Pfluegers Arch. 368:R22

    Google Scholar 

  • Nagel, W. 1979. Inhibition of potassium conductance by barium in frog skin epithelium.Biochim. Biophys. Acta 552:346–357

    PubMed  Google Scholar 

  • Nagel, W., Garcia-Diaz, J.F., Essig, A. 1983. Contribution of junctional conductance to the cellular voltage-divider ratio in frog skin.Pfluegers Arch. 399:336–341

    Google Scholar 

  • Nelson, D.J., Ehrenfeld, J., Lindemann, B. 1978. Volume changes and potential artifacts of epithelial cells of frog skin following impalement with microelectrodes filled with 3m KCl.J. Membrane Biol. Special Issue:91–119

    Google Scholar 

  • Palmer, L.G. 1984. Use of potassium depolarization to study apical transport properties in epithelia.Curr. Top. Membr. Transp. 20:105–121

    Google Scholar 

  • Palmer, L.G., Civan, M.M. 1977. Distribution of Na+, K+ and Cl between nucleus and cytoplasm inChironomus salivary gland cells.J. Membrane Biol. 33:41–61

    Google Scholar 

  • Palmer, L.G., Edelman, I.S., Lindemann, B. 1980. Current-voltage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolism.J. Membrane Biol. 57:59–71

    Google Scholar 

  • Palmer, L.G., Li, J.H.-Y., Lindemann, B., Edelman, I.S. 1982. Aldosterone control of the density of sodium channels in the toad urinary bladder.J. Membrane Biol. 64:91–102

    Google Scholar 

  • Rick, R., Dörge, A., Arnim, E. von, Thurau, K. 1978. Electron microprobe analysis of frog skin epithelium: Evidence for a syncytial sodium transport compartment.J. Membrane Biol. 39:313–331

    Google Scholar 

  • Schultz, S.G., Thompson, S.M., Suzuki, Y. 1981. On the mechanism of sodium entry across the apical membrane of rabbit colon.In: Epithelial Ion and Water Transport. A.D.C. Macknight and J.P. Leader, editors. pp. 285–295. Raven, New York

    Google Scholar 

  • Smith, P.G. 1971. The low frequency electrical impedance of the isolated frog skin.Acta Physiol. Scand. 81:355–366

    PubMed  Google Scholar 

  • Stark, G. 1973. Rectification phenomena in carrier-mediated ion transport.Biochim. Biophys. Acta 298:323–332

    PubMed  Google Scholar 

  • Tang, J., Helman, S.I. 1982. Relationship between Na current and voltage at the apical membrane of frog skin.Fed. Proc. 41:1349

    Google Scholar 

  • Tang, J., Helman, S.I. 1983. Electrical parameters of apical and basolateral membranes ofR. pipiens depolarized by 100mm [K].Fed. Proc. 42:1101

    Google Scholar 

  • Thomas, S.R., Suzuki, Y., Thompson, S.M., Schultz, S.G. 1983. Electrophysiology ofNecturus urinary bladder: I. “Instantaneous” current-voltage relations in the presence of varying mucosal sodium concentrations.J. Membrane Biol. 73:157–175

    Google Scholar 

  • Thompson, S.M., Suzuki, Y., Schultz, S.G. 1981. Current-voltage properties of the active sodium transport pathway across rabbit colon.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 47–59. Raven, New York

    Google Scholar 

  • Thompson, S.M., Suzuki, Y., Schultz, S.G. 1982. The electrophysiology of rabbit descending colon: II. Current-voltage relations of the apical membrane, the basolateral membrane, and the parallel pathways.J. Membrane Biol. 66:55–61

    Google Scholar 

  • Weinstein, F.C., Rosowski, J.J., Peterson, K., Delalic, Z., Civan, M.M. 1980. Relationship of transient electrical properties to active sodium transport by toad urinary bladder.J. Membrane Biol. 52:25–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeLong, J., Civan, M.M. Apical sodium entry in split frog skin: Current-voltage relationship. J. Membrain Biol. 82, 25–40 (1984). https://doi.org/10.1007/BF01870729

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870729

Key Words

Navigation