Skip to main content
Log in

Competitive blocking of epithelial sodium channels by organic cations: The relationship between macroscopic and microscopic inhibition constants

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Fluctuation analysis of Na current passing the apical membrane in the skin ofRana ridibunda was used to study the kinetics of Na-channel blocking by several organic cations present in the outer solution together with 60mm Na. The ratios of the apparent off-rate and on-rate constants (the microscopic inhibition constants) thus obtained for triamterene, triaminopyrimidine (TAP), 5,6-diCl-amiloride, 5H-amiloride and amiloride itself are found to be in the mean about sevenfold smaller than the corresponding inhibition constants obtained from macroscopic dose-response curves. The apparent discrepancy is explicable by competition of the organic blocker with the channel block by Na ions (the self-inhibition effect). The type of interaction between extrinsic blockage and self-inhibition may be purely competitive or mixed. However, in case of mixed inhibition the competitive component must dominate the noncompetitive component by at least seven to one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Nao :

Na ion activity in apical (mucosal) solution [mm]

Ao :

amiloride concentration in apical solution [μm]

AAo :

concentration of an amiloride analog [μm ormm]

TAP:

triaminopyrimidine

T:

triamterene

BIG:

benzimidazolyl-guanidine

PCMPS:

parachloromercuri-phenylsulfonate

I Na :

amiloride-blockable component of the macroscopic current passing the apical membrane [μamp cm−2]

a :

membrane area [cm2]

P Na :

permeability of the apical ensemble of amiloride-blockable Na channels [cm sec−1]

F :

Faraday's constant [coul mol−1]

K N :

inhibition constant [mm] of Na self-inhibition obtained macroscopically but in the absence of added organic blockers

K maAA :

macroscopic inhibition constant (or Michaelis Menten constant) [μm ormm] of the extrinsic blocker AA (amiloride analog) as obtained from the inflection point of a dose-response curve

K miAA :

microscopic inhibition constant [μm ormm] of blocker AA as obtained from noise analysis as the negative intercept of alinear rate-concentration plot with the abscissa (=k off/k on)

K AA :

ratio of the true rate constants (e.g.K A=k 20/k 02,K N=k 10/k 01)

KAA :

ratio of blocking rate constants of AA at a

References

  • Aceves, J., Cuthbert, A.W. 1979. Uptake of [3H] benzamil at different sodium concentrations. Inferences regarding the regulation of sodium permeability.J. Physiol. (London) 295:491–504

    Google Scholar 

  • Balaban, R.S., Mandel, L.J., Benos, D.J. 1979. On the cross-reactivity of amiloride and 2,4,6 triaminopyrimidine (TAP) for the cellular entry and tight junctional cation permeation pathways in epithelia.J. Membrane Biol. 49:363–390

    Google Scholar 

  • Benos, D.J., Mandel, L.J., Balaban, R.S. 1979. On the mechanism of the amiloride-sodium entry site interaction in anuran skin epithelia.J. Gen. Physiol. 73:307–326

    PubMed  Google Scholar 

  • Benos, D.J., Simon, S.H., Mandel, L.J., Cala, P.M. 1976. Effects of amiloride and some of its analogues on cation transport in isolated frog skin and thin lipid bilayers.J. Gen. Physiol. 68:43–63

    PubMed  Google Scholar 

  • Bindslev, N., Cuthbert, A.W., Edwardson, J.M., Skadhauge, E. 1982. Kinetics of amiloride action in the hen coprodaeumin vitro.Pfluegers Arch. 392:340–346

    Google Scholar 

  • Chase, H.S., Jr., Al-Awqati, Q. 1981. Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium.J. Gen. Physiol..77:693–712

    PubMed  Google Scholar 

  • Chen, Y.D. 1975. Matrix method for fluctuations and noise in kinetic systems.Proc. Natl. Acad. Sci. USA 72:3807–3811

    PubMed  Google Scholar 

  • Christensen, O., Bindslev, N. 1982. Fluctuation analysis of short-circuit current in a warm-blooded sodium-retaining epithelium: Site current, density, and interaction with triamterene.J. Membrane Biol. 65:19–30

    Google Scholar 

  • Cuthbert, A.W. 1976. Importance of guanidinium groups for blocking sodium channels in epithelia.Mol. Pharmacol. 12:945–957

    PubMed  Google Scholar 

  • Cuthbert, A.W. 1981. Sodium entry step in transporting epithelia: Results of ligand-binding studies.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 181–195. Raven, New York

    Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1974. Binding of amiloride to sodium channels in frog skin.Mol. Pharmacol. 10:880–891

    Google Scholar 

  • Dick, H.J., Lindemann, B. 1975. Saturation of Na-current into frog skin epithelium abolished by PCMPS.Pfluegers Arch. 355:R72

    Google Scholar 

  • Dittert, L.W., Higuchi, T., Reese, D.R. 1964. Phase solubility technique in studying the formation of complex salts of triamterene.J. Pharm. Sci. 53:1325

    PubMed  Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Grinstein, S., Erlij, D. 1978. Intracellular calcium and the regulation of sodium transport in the frog skin.Proc. R. Soc. London B 202:353–360

    Google Scholar 

  • Hammes, G.G. 1968. Relaxation spectrometry of biological systems.Adv. Protein Chem. 23:1–55

    PubMed  Google Scholar 

  • Hoshiko, T., Van Driessche, W. 1981. Triamterene-induced sodium current fluctuations in frog skin.Arch. Int. Physiol. Biochim. 89:P58-P60

    Google Scholar 

  • Labelle, E.F., Valentine, M.E. 1980. Inhibition by amiloride of22Na+ transport into toad bladder microsomes.Biochim. Biophys. Acta 601:195–205

    PubMed  Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1981a. Blockage of epithelial Na-channels by organic cations: The relationship of microscopic and macroscopic inhibition constants.Pfluegers Arch. 391:R25

    Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1981b. pH dependence of apical Na transport in frog skin.Adv. Physiol. Sci. 3:151–155

    Google Scholar 

  • Li, J.H.-Y., Lindemann, B. 1983. Chemical stimulation of Na Transport through amiloride blockable channels of frog skin epithelium.J. Membrane Biol. (in press)

  • Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1982. The role of Na-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone.J. Membrane Biol. 64:77–89

    Google Scholar 

  • Lindemann, B. 1977. A modifier-site model for passive Na transport into frog skin epithelium.In: Intestinal Permeation. M. Kramer and F. Lauterbach, editors. pp. 217–228. Excerpta Medica, Amsterdam

    Google Scholar 

  • Lindemann, B. 1980. The beginning of fluctuation analysis of epithelial ion transport.J. Membrane Biol. 54:1–11

    Google Scholar 

  • Lindemann, B., DeFelice, L.J. 1981. On the use of general network functions in the evaluation of noise spectra obtained from epithelia.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 1–13. Raven, New York

    Google Scholar 

  • Lindemann, B., Gebhardt, U. 1973. Delayed changes of Na-permeability in response to steps of (Na)o at the outer surface of frog skin and toad bladder.In: Transport Mechanisms in Epithelia. H.H. Ussing and N.A. Thorn, editors. pp. 115–127. Munksgaard, Copenhagen

    Google Scholar 

  • Lindemann, B., Van Driessche, W. 1977. Sodium specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195:292–294

    PubMed  Google Scholar 

  • Lindemann, B., Van Driessche, W. 1978. The mechanism of Na uptake through Na-selective channels in the epithelium of frog skin.In: Membrane Transport Processes. J.F. Hoffman, editor. Vol. 1, pp. 155–178. Raven, New York

    Google Scholar 

  • Moreno, J.H. 1974. Blockage of cation permeability across the tight junctions of gallbladder and other leaky epithelia.Nature (London) 251:150–151

    Google Scholar 

  • Palmer, L.G., Edelman, I.S., Lindemann, B. 1980. Currentvoltage analysis of apical sodium transport in toad urinary bladder: Effects of inhibitors of transport and metabolism.J. Membrane Biol. 57:59–71

    Google Scholar 

  • Palmer, L.G., Li, J.H.-Y., Lindemann, B., Edelman, I.S. 1982. Aldosterone control of the density of Na-channels in the toad urinary bladder.J. Membrane Biol. 64:91–102

    Google Scholar 

  • Rick, R., Dörge, A., Nagel, W. 1975. Influx and efflux of sodium at the outer surface of frog skin.J. Membrane Biol. 22:183–196

    Google Scholar 

  • Roth, B., Strelitz, J.Z. 1969. The protonation of 2,4-diaminopyrimidines. I. Dissociation constants and substituent effects.J. Org. Chem. 34:821

    Google Scholar 

  • Sudou, K., Hoshi, T. 1977. Mode of action of amiloride in toad urinary bladder: An electrophysiological study of the drug action on sodium permeability of the mucosal border.J. Membrane Biol. 32:115–132

    Google Scholar 

  • Takada, M., Hayashi, H. 1980. Interaction of cadmium, calcium, and amiloride in the kinetics of active sodium transport through frog skin.Jpn. J. Physiol. 31:285–303

    Google Scholar 

  • Taylor, A., Windhager, E.E. 1979. Possible role of cytosolic calcium and Na−Ca exchange in regulation of transepithelial sodium transport.Am. J. Physiol. 236:F505-F512

    PubMed  Google Scholar 

  • Turnheim, K., Luger, A., Grasl, M. 1981. Kinetic analysis of the amiloride-sodium entry site interaction in rabbit colon.Mol. Pharmacol. 20:543–550

    PubMed  Google Scholar 

  • Van Driessche, W., Borghgraef, R. 1975. Noise generated during ion transport across frog skin.Arch. Int. Physiol. Biochim. 83:140–142

    PubMed  Google Scholar 

  • Van Driessche, W., Goegelein, H. 1980. Attenuation of current and voltage noise signals recorded from epithelia.J. Theor. Biol. 86:629–648

    PubMed  Google Scholar 

  • Van Driessche, W., Lindemann, B. 1978. Low-noise amplification of voltage and current fluctuations arising in epithelia.Rev. Sci. Instrum. 49:52–55

    Google Scholar 

  • Van Driessche, W., Lindemann, B. 1979. Concentration-dependence of currents through single sodium-selective pores in frog skin.Nature (London) 282:519–520

    Google Scholar 

  • Vigne, P., Frelin, C., Lazdunski, M. 1982. The amiloridesensitive Na+/H+ exchange system in skeletal muscle cells in culture.J. Biol. Chem. 257:9394–9400

    PubMed  Google Scholar 

  • Zeiske, W. 1975. The influence of 2,4,6-triamino-pyrimidine on Na-transport in frog skin.Pfluegers Arch. 359:R127

    Google Scholar 

  • Zeiske, W., Lindemann, B. 1974. Chemical stimulation of Na current through the outer surface of frog skin epithelium.Biochim. Biophys. Acta 352:323–326

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.H.Y., Lindemann, B. Competitive blocking of epithelial sodium channels by organic cations: The relationship between macroscopic and microscopic inhibition constants. J. Membrain Biol. 76, 235–251 (1983). https://doi.org/10.1007/BF01870366

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870366

Key Words

Navigation