Skip to main content

Using Whole-Cell Electrophysiology and Patch-Clamp Photometry to Characterize P2X7 Receptor Currents

  • Protocol
  • First Online:
The P2X7 Receptor

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2510))

Abstract

The fundamental property of P2X7 receptor (P2X7R) channels is the transport of cations across the cell surface membrane. Electrophysiology and patch-clamp photometry are readily accessible methods of measuring this flux in a wide range of cell types. They are important tools used to characterize the functional properties of native cells studied in cell culture, in vitro tissue slices, and, in some cases, in situ single cells. Further, they are efficient methods of probing the relation of structure to function of recombinant receptors expressed in heterologous systems. Here, we provide step-by-step procedures for use of two standard recording protocols, broken-patch and perforated-patch voltage clamp. Further, we describe a third technique, called the dye-overload method, that uses simultaneous measurement of membrane current and fura-2 fluorescence to quantify the contribution of Ca2+ flux to the ATP-gated current.

Xin Liang, Laura Janks, and Terrance M. Egan are joint first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AU:

Arbitrary unit

BU:

Bead unit

DMSO:

Dimethyl sulfoxide

ECS:

Extracellular solution

ICS:

Intracellular solution

P2XR:

P2X receptor

PCa/PNa:

Ca2+ Permeability relative to Na+

Pf%:

Fractional Ca2+ current

PMT:

Photomultiplier tube

ROI:

Region of interest

References

  1. Burnstock G (2018) Purine and purinergic receptors. Brain Neurosci Adv 2:2398212818817494. https://doi.org/10.1177/2398212818817494

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kaczmarek-Hajek K, Lorinczi E, Hausmann R, Nicke A (2012) Molecular and functional properties of P2X receptors--recent progress and persisting challenges. Purinergic Signal 8(3):375–417. https://doi.org/10.1007/s11302-012-9314-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schmid R, Evans RJ (2019) ATP-gated P2X receptor channels: molecular insights into functional roles. Annu Rev Physiol 81:43–62. https://doi.org/10.1146/annurev-physiol-020518-114259

    Article  CAS  PubMed  Google Scholar 

  4. Savio LEB, de Andrade MP, da Silva CG, Coutinho-Silva R (2018) The P2X7 receptor in inflammatory diseases: angel or demon? Front Pharmacol 9:52. https://doi.org/10.3389/fphar.2018.00052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kopp R, Krautloher A, Ramirez-Fernandez A, Nicke A (2019) P2X7 interactions and signaling - making head or tail of it. Front Mol Neurosci 12:183. https://doi.org/10.3389/fnmol.2019.00183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rubaiy HN (2017) A short guide to electrophysiology and ion channels. J Pharm Pharm Sci 20:48–67. https://doi.org/10.18433/J32P6R

    Article  CAS  PubMed  Google Scholar 

  7. Ishibashi H, Moorhouse AJ, Nabekura J (2012) Perforated whole-cell patch-clamp technique: a user’s guide. In: Patch clamp techniques. Springer protocols handbooks. Springer, New York, NY, pp 71–83. https://doi.org/10.1007/978-4-431-53993-3_4

    Chapter  Google Scholar 

  8. Kim M, Jiang LH, Wilson HL, North RA, Surprenant A (2001) Proteomic and functional evidence for a P2X(7) receptor signalling complex. EMBO J 20(22):6347–6358

    Article  CAS  Google Scholar 

  9. Samways DS, Khakh BS, Dutertre S, Egan TM (2011) Preferential use of unobstructed lateral portals as the access route to the pore of human ATP-gated ion channels (P2X receptors). Proc Natl Acad Sci U S A 108(33):13800–13805. https://doi.org/10.1073/pnas.1017550108. 1017550108 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  10. Neher E (1995) The use of fura-2 for estimating Ca buffers and Ca fluxes. Neuropharmacology 34(11):1423–1442

    Article  CAS  Google Scholar 

  11. Egan TM, Samways DS, Li Z (2006) Biophysics of P2X receptors. Pflugers Arch 452(5):501–512

    Article  CAS  Google Scholar 

  12. Egan TM, Khakh BS (2004) Contribution of calcium ions to P2X channel responses. J Neurosci 24(13):3413–3420

    Article  CAS  Google Scholar 

  13. Nicke A, Grutter T, Egan TM (2018) P2X receptors. The Oxford handbook of neuronal ion channels. Oxford University Press, Oxford. https://doi.org/10.1093/oxfordhb/9780190669164.013.7

    Book  Google Scholar 

  14. Liang X, Samways DS, Wolf K, Bowles EA, Richards JP, Bruno J, Dutertre S, DiPaolo RJ, Egan TM (2015) Quantifying Ca2+ current and permeability in ATP-gated P2X7 receptors. J Biol Chem 290(12):7930–7942. https://doi.org/10.1074/jbc.M114.627810

    Article  CAS  PubMed  Google Scholar 

  15. Sherman-Gold R (ed) (1993) The Axon guide for electrophysiology and biophysics laboratory techniques, 1st edn. Axon Instruments, Foster City, CA

    Google Scholar 

  16. Parker KE (1998) Modulation of ATP-gated non-selective cation channel (P2X1 receptor) activation and desensitization by the actin cytoskeleton. J Physiol Lond 510:19–25

    Article  CAS  Google Scholar 

  17. Horn R, Korn SJ (1992) Prevention of rundown in electrophysiological recording. Methods Enzymol 207:149–155

    Article  CAS  Google Scholar 

  18. Partridge LD, Zeilhofer HU, Swandulla D (1998) Combined whole-cell and single-channel current measurement with quantitative Ca2+ injection or Fura-2 measurement of Ca2+. Methods Enzymol 293:371–383

    Article  CAS  Google Scholar 

  19. Zeilhofer HU, Swandulla D, Reeh PW, Kress M (1996) Ca2+ permeability of the sustained proton-induced cation current in adult rat dorsal root ganglion neurons. J Neurophysiol 76(5):2834–2840

    Article  CAS  Google Scholar 

  20. Frings S, Hackos DH, Dzeja C, Ohyama T, Hagen V, Kaupp UB, Korenbrot JI (2000) Determination of fractional calcium ion current in cyclic nucleotide-gated channels. Methods Enzymol 315:797–817

    Article  CAS  Google Scholar 

  21. Jatzke C, Watanabe J, Wollmuth LP (2002) Voltage and concentration dependence of Ca(2+) permeability in recombinant glutamate receptor subtypes. J Physiol 538(Pt 1):25–39

    Article  CAS  Google Scholar 

  22. Wollmuth LP, Sakmann B (1998) Different mechanisms of Ca2+ transport in NMDA and Ca2+-permeable AMPA glutamate receptor channels. J Gen Physiol 112(5):623–636

    Article  CAS  Google Scholar 

  23. Liang X, Samways DSK, Cox J, Egan TM (2019) Ca(2+) flux through splice variants of the ATP-gated ionotropic receptor P2X7 is regulated by its cytoplasmic N terminus. J Biol Chem 294(33):12521–12533. https://doi.org/10.1074/jbc.RA119.009666

    Article  CAS  PubMed  Google Scholar 

  24. Samways DS, Egan TM (2007) Acidic amino acids impart enhanced Ca2+ permeability and flux in two members of the ATP-gated P2X receptor family. J Gen Physiol 129(3):245–256

    Article  CAS  Google Scholar 

  25. Yan Z, Khadra A, Sherman A, Stojilkovic SS (2011) Calcium-dependent block of P2X7 receptor channel function is allosteric. J Gen Physiol 138(4):437–452. https://doi.org/10.1085/jgp.201110647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272(5262):735–738

    Article  CAS  Google Scholar 

  27. Chessell IP, Michel AD, Humphrey PPA (1997) Properties of the pore-forming P2X7 purinoceptor in mouse NTW8 microglial cells. Br J Pharmacol 121:1429–1437

    Article  CAS  Google Scholar 

  28. Roger S, Gillet L, Baroja-Mazo A, Surprenant A, Pelegrin P (2010) C-terminal calmodulin-binding motif differentially controls human and rat P2X7 receptor current facilitation. J Biol Chem 285(23):17514–17524. https://doi.org/10.1074/jbc.M109.053082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roger S, Pelegrin P, Surprenant A (2008) Facilitation of P2X7 receptor currents and membrane blebbing via constitutive and dynamic calmodulin binding. J Neurosci 28(25):6393–6401. https://doi.org/10.1523/JNEUROSCI.0696-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hibell AD, Kidd EJ, Chessell IP, Humphrey PP, Michel AD (2000) Apparent species differences in the kinetic properties of P2X(7) receptors. Br J Pharmacol 130(1):167–173

    Article  CAS  Google Scholar 

  31. Janks L, Sharma CVR, Egan TM (2018) A central role for P2X7 receptors in human microglia. J Neuroinflammation 15(1):325. https://doi.org/10.1186/s12974-018-1353-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Janks L, Sprague RS, Egan TM (2018) ATP-gated P2X7 receptors require chloride channels to promote inflammation in human macrophages. J Immunol 202:883. https://doi.org/10.4049/jimmunol.1801101

    Article  CAS  PubMed  Google Scholar 

  33. Robinson LE, Shridar M, Smith P, Murrell-Lagnado RD (2014) Plasma membrane cholesterol as a regulator of human and rodent P2X7 receptor activation and sensitization. J Biol Chem 289(46):31983–31994. https://doi.org/10.1074/jbc.M114.574699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fischer W, Wirkner K, Weber M, Eberts C, Koles L, Reinhardt R, Franke H, Allgaier C, Gillen C, Illes P (2003) Characterization of P2X3, P2Y1 and P2Y4 receptors in cultured HEK293-hP2X3 cells and their inhibition by ethanol and trichloroethanol. J Neurochem 85(3):779–790

    Article  CAS  Google Scholar 

  35. He ML, Zemkova H, Koshimizu TA, Tomic M, Stojilkovic SS (2003) Intracellular calcium measurements as a method in studies on activity of purinergic P2X receptor-channels. Am J Phys Cell Physiol 285:C467

    Article  CAS  Google Scholar 

  36. Nicke A, Kuan YH, Masin M, Rettinger J, Marquez-Klaka B, Bender O, Gorecki DC, Murrell-Lagnado RD, Soto F (2009) A functional P2X7 splice variant with an alternative transmembrane domain 1 escapes gene inactivation in P2X7 knock-out mice. J Biol Chem 284(38):25813–25822. https://doi.org/10.1074/jbc.M109.033134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by grants from the NIH (TME, R01GM112188), Saint Louis University (TME), the Natural Science Foundation of Guangdong Province (XL, No. 2020A1515010802), Basic Research Program of Shenzhen (XL, JCYJ20180507181654186), Health system scientific research project of Shenzhen Guangming District Science and innovation Bureau (XL, 2020R01073), Special fund for economic development of ShenZhen Guangming District (XL, 2021R01128), Disciplinary Construction of Posts for Zhujiang Scholars (XL, 4SG21005G), and Discipline construction project of Guangdong Medical University (XL, 4SG21008G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrance M. Egan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liang, X., Janks, L., Egan, T.M. (2022). Using Whole-Cell Electrophysiology and Patch-Clamp Photometry to Characterize P2X7 Receptor Currents. In: Nicke, A. (eds) The P2X7 Receptor. Methods in Molecular Biology, vol 2510. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2384-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2384-8_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2383-1

  • Online ISBN: 978-1-0716-2384-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics