Skip to main content
Log in

Comparison of nonelectrolyte permeability patterns in several epithelia

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Reflection coefficients (σ's) have been determined for 13 to 36 non-electrolytes in goldfish gallbladder, bullfrog gallbladder, bullfrog intestine, and guineapig intestine. These results have been compared with the results of similar previous studies in rabbit gallbladder, bullfrog choroid plexus, and guinea-pig gallbladder to determine types of species variation, organ variation, and individual variation. Two principal types of variation were established: (1) Branched solutes are much less permeant than straight-chain analogues in gallbladders of all four species studied, whereas this effect is small in intestine and negligible in choroid plexus. This variation in degree of discrimination against branched solutes is attributed to variation in closeness of packing of membrane lipids. (2) In certain epithelia, small polar solutes are more permeant than expected from their bulk nonpolar-solvent/water partition coefficients and from their size. This feature is very marked in rabbit gallbladder, somewhat marked in guineapig gallbladder and intestine and in bullfrog choroid plexus, apparent mainly just for formamide (the smallest polar nonelectrolyte) in bullfrog intestine, and virtually absent in goldfish and bullfrog gallbladders. Analysis of individual variability in preparations of guinea-pig intestine and rabbit gallbladder from different animals shows covariation in σ's of small polar nonelectrolytes uncorrelated with variation in σ's of other solutes. Small polar solutes, in epithelia where their permeability is as expected from size and from nonpolar-solvent/water partition coefficients, resemble other solutes in having markedly temperature-dependent σ's (high apparent activation energies of permeation), but have nearly temperature-independent σ's (low activation energies, as for diffusion in aqueous solution) in epithelia where their permeability is enhanced. These findings suggest that additional size-restricted permeation pathways by-passing membrane lipid (“pores”) are present in some tissues and smaller or virtually absent in others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry, P. H., Diamond, J. M. 1970. Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes.J. Membrane Biol. 3:93.

    Google Scholar 

  • Barry, R. J. C., Dikstein, S., Matthews, J., Smyth, D. H., Wright, E. M. 1964. Electrical potentials associated with intestinal sugar transfer.J. Physiol. 171:316.

    PubMed  Google Scholar 

  • Collander, R. 1937. The permeability of plant protoplasts to non-electrolytes.Trans. Faraday Soc. 33:985.

    Google Scholar 

  • Collander, R. 1947. On “lipid solubility”.Acta Physiol. Scand. 13:363.

    Google Scholar 

  • Collander, R. 1949. Die Verteilung organischer Verbindungen zwischen Äther und Wasser.Acta Chem. Scand. 3:717.

    Google Scholar 

  • Collander, R. 1950. The distribution of organic compounds between isobutanol and water.Acta Chem. Scand. 4:1085.

    Google Scholar 

  • Collander, R. 1951. The partition of organic compounds between higher alcohols and water.Acta Chem. Scand. 5:774.

    Google Scholar 

  • Collander, R. 1954. The permeability ofNitella cells to non-electrolytes.Physiol. Pl. 7:420.

    Google Scholar 

  • Collander, R. 1959. Das Permeationsvermögen des Pentaerythrits verglichen mit dem des Erythrits.Physiol. Pl. 12:139.

    Google Scholar 

  • Collander, R., Bärlund, H. 1933. Permeabilitätstudien anChara Ceratophylla. II. Die Permeabilität für Nichtelektrolyte.Acta Bot. Fenn. 11:1.

    Google Scholar 

  • Dainty, J., Ginzburg, B. Z. 1963. Irreversible thermodynamics and frictional models of membrane processes, with particular reference to the cell membrane.J. Theoret. Biol. 5:256.

    Google Scholar 

  • DeGier, J., Mandersloot, J. G., Hupkes, J. V., McElhaney, R. N., Van Beek, W. P. 1971. On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes.Biochim. Biophys. Acta 233:610.

    PubMed  Google Scholar 

  • DeGier, J., Mandersloot, J. G., Van Deenen, L. L. M. 1968. Lipid composition and permeability of liposomes.Biochim. Biophys. Acta 150:666.

    PubMed  Google Scholar 

  • Diamond, J. M. 1964. Transport of salt and water in rabbit and guinea pig gall bladder.J. Gen. Physiol. 48:1.

    PubMed  Google Scholar 

  • Diamond, J. M. 1966. Non-linear osmosis.J. Physiol. 183:58.

    PubMed  Google Scholar 

  • Diamond, J. M., Harrison, S. C. 1966. The effect of membrane fixed charges on diffusion potentials and streaming potentials.J. Physiol. 183:37.

    PubMed  Google Scholar 

  • Diamond, J. M., Wright, E. M. 1969a. Molecular forces governing non-electrolyte permeation through cell membranes.Proc. Roy. Soc. B (London) 172:273.

    Google Scholar 

  • Diamond, J. M., Wright, E. M. 1969b. Biological membranes: The physical basis of ion and non-electrolyte selectivity.Annu. Rev. Physiol. 31:581.

    PubMed  Google Scholar 

  • DiPolo, R., Sha'afi, R. I., Solomon, A. K. 1970. Transport parameters in a porous cellulose acetate membrane.J. Gen. Physiol. 55:63.

    PubMed  Google Scholar 

  • Goldstein, D. A., Solomon, A. K. 1960. Determination of equivalent pore radius for human red cells by osmotic pressure measurement.J. Gen. Physiol. 44:1.

    PubMed  Google Scholar 

  • Gutknecht, J. 1968. Permeability ofValonia to water and solutes: Apparent absence of aqueous membrane pores.Biochim. Biophys. Acta 163:20.

    PubMed  Google Scholar 

  • Holz, R., Finkelstein, A. 1970. The water and non-electrolyte permeability induced in thin lipid membranes by the polyene antibiotics Nystatin and Amphotericin B.J. Gen. Physiol. 56:125.

    Article  PubMed  Google Scholar 

  • Kedem, O., Katchalsky, A. 1959. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.Biochim. Biophys. Acta 27:229.

    Google Scholar 

  • Krasne, S. 1971. Phase transitions in bilayer membranes as a test of the “carrier” mechanisms of action for nonactin, valinomycin and iodine and the “pore” mechanisms of action of gramicidin A′ and malonyl gramicidin A′. Ph. D. Dissertation, University of California at Los Angeles.

  • Lieb, W. R., Stein, W. D. 1969. Biological membranes behave as non-porous polymeric sheets with respect to the diffusion of non-electrolytes.Nature 224:240.

    PubMed  Google Scholar 

  • Lieb, W. R., Stein, W. D. 1971. The molecular basis of simple diffusion within biological membranes.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. p. 1. Academic Press Inc., New York.

    Google Scholar 

  • Lindemann, B., Solomon, A. K. 1962. Permeability of luminal surface of intestinal mucosal cells.J. Gen. Physiol. 45:801.

    PubMed  Google Scholar 

  • Machen, T. E., Diamond, J. M. 1969. An estimate of the salt concentration in the lateral intercellular spaces of rabbit gall-bladder during maximal fluid transport.J. Membrane Biol. 1:194.

    Google Scholar 

  • Reid, R. C., Sherwood, T. K. 1966. The Properties of Gases and Liquids, second edition. McGraw-Hill Book Co., Inc., New York.

    Google Scholar 

  • Rich, G. T., Sha'afi, R. I., Barton, T. C., Solomon, A. K. 1967. Permeability studies on red cell membranes of dog, cat, and beef.J. Gen. Physiol. 50:2391.

    PubMed  Google Scholar 

  • Rosen, H., Leaf, A., Schwartz, W. B. 1964. Diffusion of weak acids across the toad bladder.J. Gen. Physiol. 48:379.

    PubMed  Google Scholar 

  • Ruhland, W., Hoffmann, C. 1925. Die Permeabilität vonBeggiatoa mirabilis.Planta 1:1.

    Google Scholar 

  • Schiff, E. R., Small, N. C., Dietschy, J. M. 1972. Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon.J. Clin. Invest. 51:1351.

    PubMed  Google Scholar 

  • Schönfelder, S. 1930. Weitere Untersuchungen über die Permeabilität vonBeggiatoa mirabilis.Planta 12:414.

    Google Scholar 

  • Schultz, S. G., Zalusky, B. 1964. Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport.J. Gen. Physiol. 47:1043.

    PubMed  Google Scholar 

  • Sha'afi, R. I., Gary-Bobo, C. M., Solomon, A. K. 1971. Permeability of red cell membranes to small hydrophilic and lipophilic solutes.J. Gen. Physiol. 58:238.

    PubMed  Google Scholar 

  • Sha'afi, R. I., Rich, G. T., Sidel, V. W., Bossert, W., Solomon, A. K. 1967. The effect of the unstirred layer on human red cell water permeability.J. Gen. Physiol. 50:1377.

    PubMed  Google Scholar 

  • Smulders, A. P. 1970. The permeability of the gall-bladder to non-electrolytes. Ph. D. Dissertation, University of California at Los Angeles.

  • Smulders, A. P., Tormey, J. McD., Wright, E. M. 1972. The effect of osmotically induced water flows on the permeability and ultrastructure of the rabbit gallbladder.J. Membrane Biol. 7:164.

    Google Scholar 

  • Smulders, A. P., Wright, E. M. 1971. The magnitude of non-electrolyte selectivity in the gallbladder epithelium.J. Membrane Biol. 5:297.

    Google Scholar 

  • Smyth, D. H., Wright, E. M. 1966. Streaming potentials in the rat small intestine.J. Physiol. 182:591.

    PubMed  Google Scholar 

  • Stein, W. D. 1962. Spontaneous and enzyme-induced dimer formation and its role in membrane permeability. II. The mechanism of movement of glycerol across the human erythrocyte membrane.Biochim. Biophys. Acta 59:47.

    PubMed  Google Scholar 

  • Urry, D. W., Goodall, M. C., Glickson, J. D., Mayers, D. G. 1971. The gramicidin-A transmembrane channel: characteristics of head-to-head dimerized π (L, D) helices.Proc. Nat. Acad. Sci. 68:1907.

    PubMed  Google Scholar 

  • Van Deenen, L. L. M., Houtsmuller, U. M. T., Haas, G. H. de, Mulder, E. 1962. Monomolecular layers of synthetic phosphatides.J. Pharm. Pharmacol. 14:429.

    PubMed  Google Scholar 

  • Wedner, H. J., Diamond, J. M. 1969. Contributions of unstirred-layer effects to apparent electrokinetic phenomena in the gall-bladder.J. Membrane Biol. 1:92.

    Google Scholar 

  • Wright, E. M., Diamond, J. M. 1969a. An electrical method of measuring non-electrolyte permeability.Proc. Roy. Soc. B (London) 172:203.

    Google Scholar 

  • Wright, E. M., Diamond, J. M. 1969b. Patterns of non-electrolyte permeability.Proc. Roy. Soc. B (London) 172:227.

    Google Scholar 

  • Wright, E. M., Prather, J. W. 1970. The permeability of the choroid plexus to non-electrolytes.J. Membrane Biol. 2:127.

    Google Scholar 

  • Wright, E. M., Smulders, A. P., Tormey, J. McD. 1972. The role of the lateral intercellular spaces and solute polarization effects in the passive flow of water across the rabbit gallbladder.J. Membrane Biol. 7:198.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hingson, D.J., Diamond, J.M. Comparison of nonelectrolyte permeability patterns in several epithelia. J. Membrain Biol. 10, 93–135 (1972). https://doi.org/10.1007/BF01867849

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01867849

Keywords

Navigation