Skip to main content
Log in

Morphology of the visual system ofChaoborus crystallinus (Diptera, Chaoboridae)

I. Larval compound eyes and stemmata

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

In this paper we present findings on the fine structure of the ommatidia and stemmata [lateral ocelli] of larvalChaoborus. The organization of these photoreceptors is compared with that of imaginai compound eyes and stemmata of related taxa; their homology is elucidated. Peculiar attributes of the larval ommatidium include the lack of a corneal lens, the presence of a eucone crystalline cone which is composed of four Semper cells, and the location of most retinula cell nuclei proximal the basal lamina. Two primary and 10–12 accessory pigment cells are present whose nuclei are situated distally along with the nuclei of the cone cells. The retinula cells are arranged in a pattern common to most Diptera. Surrounding the central retinula cell (R8) are retinula cells R1–R7. R7 distally sends a process to the center of the ommatidium. Rhabdomeres of R7 and R8 are in a tandem position. The rhabdom belongs to the fused type since the extracellular space between neighboring rhabdomeres and/or retinula cells is very small. The two stemmata are referred to here as primary and accessory stemma. The primary stemma is a complex formation of three fused units. Each of these units is itself a stemma. A dioptric apparatus can be found which is composed of a single-cell crystalline cone and a group of refractive cells. The secondary stemma possesses neither a dioptric apparatus nor pigment granules. Its rhabdom is voluminous but its arrangement is not fixed. Though these stemmata represent a highly derived situation, where several ommatidia or stemma units have been fused, arguments supporting the homology of stemmata and ommatidia can be furthered. The crystalline cone, though made of a single Semper cell, can be homologized with the cones of ommatidia since the fine structure is identical. Cones of both primary stemma and compound eye are of the eucone type, and centrally contain granules which exhibit a crystalline arrangement. Apart from refraction, Semper cells are involved in cuticle formation. Refractive cells may be homologous to either cone or pigment cells. The pattern in which refractive and cone cells of the primary stemma are arranged appears to be induced by retinula cells. Some of stemmata's characters which are very uncommon for ommatidia may be based on constraints due to complex stemma formation or to functional changes. Among many taxa related to Chaoboridae, a homologous group of stemmata with similar arrangement of units can be found. It is revealed that well-developed imaginal compound eyes within larval stages represent a synapomorphy of Culicidae and Chaoboridae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altner I, Burkhardt D (1981) Fine structure of the ommatidia and the occurrence of rhabdomeric twist in the dorsal eye of maleBibio marci (Diptera, Nematocera, Bibionidae). Cell Tissue Res 215:607–623

    Google Scholar 

  • Bierbrodt E (1943) Der Larvenkopf vonPanorpa communis L. und seine Verwandlung, mit besonderer Berücksichtigung des Gehirns und der Augen. Zool Jb Anat 68:49–136

    Google Scholar 

  • Blest AD, Price DG (1984) Retinal mosaics of the principal eyes of jumping spiders (Salticidae: Araneae): adaptations for high visual acuity. Protoplasma 120:172–184

    Google Scholar 

  • Brammer JD (1970) The ultrastructure of the compound eye of a mosquitoAedes aegypti L. J Exp Zool 175:181–196

    Google Scholar 

  • Cagan RL, Ready DF (1989) The emergence of order in theDrosophila pupal retina. Dev Biol 136:346–362

    Google Scholar 

  • Campos-Ortega JA (1980) On compound eye development inDrosophila melanogaster. In: Moscona AA, Monroy A (eds) Current topics in developmental biology, vol 15. Academic Press, New York, pp 347–371

    Google Scholar 

  • Constantineanu M (1930) Der Aufbau der Sehorgane bei den im Süßwasser lebenden Dipterenlarven und Puppen und Imagines vonCulex. Zool Jb Anat 52:253–346

    Google Scholar 

  • Dietrich W (1909) Die Fazettenaugen der Dipteren. Z Wiss Zool 92:465–539

    Google Scholar 

  • Duhr B (1955) Über Bewegung, Orientierung und Beutefang der Corethralarve. Zool Jb Allg Zool 65:387–429

    Google Scholar 

  • Franke WW, Krien S, Brown RM (1969) Simultaneous glutaraldehyde-osmium tetroxide fixation with postosmication. Histochemie 19:162–164

    Google Scholar 

  • Grenacher H (1879) Untersuchungen über das Sehorgan der Arthropoden, insbesondere der Spinnen, Insecten und Crustaceen. Vandenhoek und Ruprecht, Göttingen

    Google Scholar 

  • Haas G (1956) Entwicklung des Komplexauges beiCulex undAedes aegypti. Z Morphol Ökol Tiere 45:198–216

    Google Scholar 

  • Hagberg M (1986) Ultrastructure and central projections of extraocular photorecptors in caddisflies (Insecta, Trichoptera). Cell Tissue Res 245:643–648

    Google Scholar 

  • Hennig W (1968) Kritische Bemerkungen über den Bau der Flügelwurzel bei den Dipteren und die Frage nach der Monophylie der Nematocera. Stuttg Beitr Naturk 193:1–23

    Google Scholar 

  • Hennig W (1973) Diptera. In: Helmcke et al. (eds) Handbuch der Zoologie 4(2)2/31. De Gruyter, Berlin, pp 1–200

    Google Scholar 

  • Kreuzmann B, Seifert P, Smola U (1989) TEM/REM-Untersuchungen der Komplexaugen von Chironomiden (Diptera). Verh Dtsch Zool Ges 82 (Düsseldorf):261–262

    Google Scholar 

  • Leydig F (1851) Anatomisches und histologisches über die Larve vonCorethra plumicornis. Z Wiss Zool 3:435–450

    Google Scholar 

  • Meinertzhagen IA (1973) Development of the compound eye and optic lobe of insects. In: Young D (ed) Developmental neurobiology of Arthropods. Cambridge University Press, New York, pp 51–104

    Google Scholar 

  • Melzer RR, Paulus HF (1989) Evolutionswege zu den Larvalaugen der Insekten — die Stemmata der höheren Dipteren und ihre Umbildung zum BOLWIG-Organ. Z Zool Syst Evolutionsforsch 27:200–245

    Google Scholar 

  • Meyer-Rochow VB, Waldvogel H (1979) Visual behaviour and the structure of dark- and light-adapted larval and adult eyes of the New Zealand GlowwormArachnocampa luminosa (Mycetophilidae: Diptera). J Insect Physiol 25:601–613

    Google Scholar 

  • Mischke U (1986) Stemmata: innere „Augen“ der Insekten. Verh Dtsch Zool Ges 79 (München):227–228

    Google Scholar 

  • Mouze M (1984) Morphologie et développement des yeux simples et composes des insectes. In: Ali MA (ed) Photoreception and Vision in Invertebrates. Plenum Press, New York, London, pp 661–698

    Google Scholar 

  • Nyhof JM, McIver SB (1987) Fine structure of the ocelli of the larval black flySimulium vittatum (Diptera: Simuliidae). Can J Zool 65:142–150

    Google Scholar 

  • O'Grady GE, McIver SB (1987) Fine structure of the compound eye of the black flySimulium vittatum (Diptera: Simuliidae). Can J Zool 65:1454–1469

    Google Scholar 

  • Paulus HF (1972) Der Feinbau der Komplexaugen einiger Collembolen, eine vergleichend-anatomische Untersuchung. Zool Jb Anat 89:1–116

    Google Scholar 

  • Paulus HF (1979) Eye structure and the monophyly of the Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold Co., New York, pp 299–384

    Google Scholar 

  • Paulus HF (1986) Evolutionswege zum Larvalauge der Insekten — ein Modell für die Entstehung und die Ableitung der ozellären Lateralaugen der Myriapoda von Fazettenaugen. Zool Jb Syst 113:353–371

    Google Scholar 

  • Paulus HF (1989) Das Homologisieren in der Feinstrukturforschung: Das Bolwig-Organ der höheren Dipteren und seine Homologisierung mit Stemmata und Ommatidien eines ursprünglichen Fazettenauges der Mandibulata. Zool Beitr NF 32:437–478

    Google Scholar 

  • Paulus HF, Schmidt M (1978) Evolutionswege zum Larvalauge der Insekten: Die Stemmata der Trichoptera und Lepidoptera. Z Zool Syst Evolutionsforsch 16:188–216

    Google Scholar 

  • Remane A (1956) Die Grundlagen des natürlichen Systems der vergleichenden Anatomie und der Phylogenetik. Akademische Verlagsgesellschaft Geest u. Portig, Leipzig, pp. 1–364

    Google Scholar 

  • Sato S (1950) Compound eyes ofCulex pipiens var. pallens Coquillett (Morphological studies of the compound eye in the mosquito No. 1). Sci Rep Tohoku Univ (Biol) 18:332–341

    Google Scholar 

  • Sato S (1951) Development of the compound eye ofCulex pipiens var. pallens Coquillett (Morphological studies of the compound eye ofCulex pipiens var. pallens Coquillett No. 2). Sci Rep Tohoku Univ (Biol) 19:23–28

    Google Scholar 

  • Schultz W, Schlüter U, Seifert G (1984) Extraocular photorecep-tors in the brain ofEpilachna varivestris (Coleoptera, Coccinellidae). Cell Tissue Res 236:317–320

    Google Scholar 

  • Seifert P, Smola U (1984) Morphological evidence for interaction between retinula cells of different ommatidia in the eye of the Moth-FlyPsychoda cinerea Banks (Diptera, Psychodidae). J Ultrastruct Res 86:176–185

    Google Scholar 

  • Seifert P, Wunderer H, Smola U (1985) Regional differences in a nematoceran retina (Insecta, Diptera). Zoomorphology 105:99–107

    Google Scholar 

  • Trajillo-Cenoz O (1972) The structural organization of the compound eye in insects. In: Fuortes MGF (ed) Handbook of sensory physiology, vol VIII, part 2: Physiology of sensory photoreceptor organs. Springer, Berlin Heidelberg New York, pp 5–62

    Google Scholar 

  • Weismann A (1866) Die Metamorphose derCorethra plumicornis. Z Wiss Zool 16:45–127

    Google Scholar 

  • White RH (1967) The effect of light and light deprivation upon the ultrastructure of the larval mosquito eye II. The Rhabdom. J Exp Zool 166:405–426

    Google Scholar 

  • Williams DS (1980) Organization of the compound eye of the tipulid fly during the day and night. Zoomorphology 95:85–104

    Google Scholar 

  • Williams DS, Blest AD (1980) Extracellular shedding of photoreceptor membrane in the open rhabdom of a tipulid fly. Cell Tissue Res 205:423–438

    Google Scholar 

  • Zavrel J (1907) Die Augen einiger Dipterenlarven und -Puppen. Zool Anz 31:247–255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melzer, R.R., Paulus, H.F. Morphology of the visual system ofChaoborus crystallinus (Diptera, Chaoboridae). Zoomorphology 110, 227–238 (1991). https://doi.org/10.1007/BF01633007

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01633007

Keywords

Navigation