Skip to main content
Log in

Unexpected ultrastructure of an eye in Spiralia: the larval ocelli of Procephalothrix oestrymnicus (Nemertea)

  • Original paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The evolution of eyes and their constituent photoreceptor cells in Metazoa in general and in Protostomia in particular remains unresolved with present morphological and developmental genetic data. This is mainly due to the lack of comprehensive ultrastructural data in some lineages, such as in the spiralian taxon Nemertea. The eyes of the derived Neonemertea possess rhabdomeric photoreceptor cells, considered typical of the protostome lineage. In the more basally branching palaeonemertean lineages, ultrastructural data on the eyes are wanting. Ultrastructural investigation of the eyes of the larva of the palaeonemertean Procephalothrix oestrymnicus reveals that, although in a similar position as the eyes of adult neonemertean species, the eyes in palaeonemertean larvae differ fundamentally from the expected protostomian type: They consist of one shading-pigment cell that forms a closed optical cavity embedded in the epidermis. Apart from basally distributed shading-pigment vesicles, the pigment cell apically possesses epidermal cilia and microvilli as well as sub-apical, tubular lens vesicles. Two ciliary photoreceptor cells project flattened ciliary membranes into the optical cavity formed by the pigment cell, whereas their basal portions are situated outside of the optical cavity, next to the shading-pigment cell. Although the structure of the eye in P. oestrymnicus is unparalleled in Nemertea, ciliary photoreceptor cells have been found in larval eyes of several other spiralian lineages. Occurrence of additional ciliary-type eyes in Spiralia deepens the doubts regarding the validity of the hypothesis of an exclusively rhabdomeric line of visual photoreceptor cell evolution in Protostomia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrade SCS, Strand M, Schwartz M et al (2012) Disentangling ribbon worm relationships: multi-locus analysis supports traditional classification of the phylum Nemertea. Cladistics 28:141–159. https://doi.org/10.1111/j.1096-0031.2011.00376.x

    Article  Google Scholar 

  • Andrade SCS, Montenegro H, Strand M et al (2014) A transcriptomic approach to ribbon worm systematics (Nemertea): resolving the pilidiophora problem. Mol Biol Evol 31:3206–3215. https://doi.org/10.1093/molbev/msu253

    Article  PubMed  CAS  Google Scholar 

  • Arendt D (2003) Evolution of eyes and photoreceptor cell types. Int J Dev Biol 47:563–571

    PubMed  Google Scholar 

  • Arendt D, Wittbrodt J (2001) Reconstructing the eyes of Urbilateria. Philos Trans R Soc London B Biol Sci 356:1545–1563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arendt D, Tessmar K, de Campos-Baptista M-IM et al (2002) Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development 129:1143–1154

    PubMed  CAS  Google Scholar 

  • Arendt D, Tessmar-Raible K, Snyman H et al (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871

    Article  PubMed  CAS  Google Scholar 

  • Bartolomaeus T (1992) Ultrastructure of the photoreceptors in the larvae of Lepidochiton cinereus (Mollusca, Polyplacophora) and Lacuna divaricata (Mollusca, Gastropoda). Microfauna Mar 7:215–236

    Google Scholar 

  • Bartolomaeus T (1993) Different photoreceptors in juvenile Ophelia rathkei (Annelida, Opheliida). Microfauna Mar 8:99–114

    Google Scholar 

  • Bartolomaeus T, Maslakova SA, von Döhren J (2014) Protonephridia in the larvae of the paleonemertean species Carinoma mutabilis (Carinomidae, Nemertea) and Cephalothrix (Procephalothrix) filiformis (Cephalothricidae Nemertea). Zoomorphology 133:43–57. https://doi.org/10.1007/s00435-013-0206-3

    Article  Google Scholar 

  • Beckers P, von Döhren J (2015) Nemertea (Nemertini). In: Schmidt-Rhaesa A, Harzsch S, Purschke G (eds) Structure and evolution of invertebrate nervous systems. Oxford University Press, Oxford, pp 148–165

    Chapter  Google Scholar 

  • Blumer M (1994) The ultrastructure of the eyes in the veliger-larvae of Aporrhais sp. and Bittium reticulatum (Mollusca, Caenogastropoda). Zoomorphology 114:149–159

    Article  Google Scholar 

  • Blumer MJF (1995) The ciliary photoreceptor in the teleplanic veliger larvae of Smaragdia sp. and Strombus sp. (Mollusca, Gastropoda). Zoomorphology 115:73–81

    Article  Google Scholar 

  • Blumer MJF (1996) Alterations of the eyes during ontogenesis in Aporrhais pespelecani (Mollusca, Caenogastropoda). Zoomorphology 116:123–131

    Article  Google Scholar 

  • Blumer MJF (1998) Alterations of the eyes of Carinaria lamarcki (Gastropoda, Heteropoda) during the long pelagic cycle. Zoomorphology 118:183–194

    Article  Google Scholar 

  • Blumer MJF (1999) Development of a unique eye: photoreceptors of the pelagic predator Atlanta peroni (Gastropoda, Heteropoda). Zoomorphology 119:81–91

    Article  Google Scholar 

  • Charpignon V (2006) Homeobox-containing genes in the nemertean Lineus: key players in the antero-posterior body patterning and in the specification of the visual structures. Dissertation, Universität Basel, Université de Reims

  • Darwin C (1859) The origin of species by means of natural selection, or the preservation of favored races in the struggle for life, 1st edn. John Murray, London

    Google Scholar 

  • Eakin RM (1979) Evolutionary significance of photoreceptors: in retrospect. Am Zool 19:647–653

    Article  Google Scholar 

  • Eakin RM, Brandenburger JL (1981) Fine structure of the eyes of Pseudoceros canadensis (Turbellaria, Polycladida). Zoomorphology 98:1–16

    Article  Google Scholar 

  • Eakin RM, Westfall JA (1964) Further observations on the fine structure of some invertebrate eyes. Zeitschrift für Zellforsch mikroskopische Anat 62:310–332

    Article  CAS  Google Scholar 

  • Eakin RM, Westfall JA (1968) Fine structure of nemertean ocelli. Am Zool 8:803

    Google Scholar 

  • Gibson R (1990) The macrobenthic nemertean fauna of Hong Kong. In: Morton B (ed) The marine flora and fauna of Hong Kong and southern China. University Press, Hong Kong, pp 33–212

    Google Scholar 

  • Gibson R, Sundberg P (1992) Three new nemerteans from Hong Kong. In: Morton B (ed) The marine flora and fauna of Hong Kong and southern China. University Press., Hong Kong, pp 97–129

    Google Scholar 

  • Hubrecht AAW (1879) The genera of European nemerteans critically revised, with description of several new species. Notes from Leyden Museum 1:193–232

    Google Scholar 

  • Hughes RL, Woollacott RM (1978) Ultrastructure of potential photoreceptor organs in the larva of Scrupocellaria bertholetti (Bryozoa). Zoomorphologie 91:225–234

    Article  Google Scholar 

  • Iwata F (1960) Studies on the comparative embryology of nemerteans with special reference to their interrelationships. Publs Akkeshi mar biol Stn 10:1–55

    Google Scholar 

  • Jespersen Å, Lützen J (1988) Fine structure of the eyes of three species of hoplonemerteans (Rhynchocoela: Enopla). New Zeal J Zool Zool 15:203–210

    Article  Google Scholar 

  • Kajihara H, Kakui K, Yamasaki H, Hiruta SF (2015) Tubulanus tamias sp. nov. (Nemertea: Palaeonemertea) with two different types of epidermal eyes. Zool Sci 32:596–604

    Article  PubMed  CAS  Google Scholar 

  • Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  PubMed  CAS  Google Scholar 

  • Kvist S, Laumer CE, Junoy J, Giribet G (2014) New insights into the phylogeny, systematics and DNA barcoding of Nemertea. Invertebr Syst 28:287–308. https://doi.org/10.1071/IS13061

    Article  CAS  Google Scholar 

  • Kvist S, Chernyshev AV, Giribet G (2015) Phylogeny of Nemertea with special interest in the placement of diversity from Far East Russia and northeast Asia. Hydrobiologia 760:105–119

    Article  CAS  Google Scholar 

  • Lanfranchi A, Bedini C, Ferrero E (1981) The ultrastructure of the eyes in larval and adult polyclads (Turbellaria). Hydrobiologia 84:267–275

    Article  Google Scholar 

  • Loosli F, Kmita-Cunisse M, Gehring WJ (1996) Isolation of a Pax-6 homolog from the ribbonworm Lineus sanguineus. Proc Natl Acad Sci 93:2658–2663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maslakova SA, Martindale MQ, Norenburg JL (2004) Fundamental properties of the spiralian developmental program are displayed by the basal nemertean Carinoma tremaphoros (Palaeonemertea, Nemertea). Dev Biol 267:342–360. https://doi.org/10.1016/j.ydbio.2003.10.022

    Article  PubMed  CAS  Google Scholar 

  • Nilsson D-E (2009) The evolution of eyes and visually guided behaviour. Philos Trans R Soc London B Biol Sci 364:2833–2847

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson D-E (2013) Eye evolution and its functional basis. Vis Neurosci 30:5–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Norenburg JL, Stricker SA (2002) Phylum Nemertea. In: Young CM (ed) Atlas of marine invertebrate larvae. Academic Press, San Diego, pp 163–177

    Google Scholar 

  • Passamaneck YJ, Furchheim N, Hejnol A et al (2011) Ciliary photoreceptors in the cerebral eyes of a protostome larva. Evodevo 2:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porter ML, Blasic JR, Bok MJ et al (2011) Shedding new light on opsin evolution. Proc R Soc London Ser B Biol Sci 279:3–14

    Article  Google Scholar 

  • Purschke G, Arendt D, Hausen H, Müller MCM (2006) Photoreceptor cells and eyes in Annelida. Arthropod Struct Dev 35:211–230

    Article  PubMed  Google Scholar 

  • Randel N, Jékely G (2016) Phototaxis and the origin of visual eyes. Proc R Soc London Ser B Biol Sci 371:20150042

    Google Scholar 

  • Ritger RK, Norenburg JL (2006) Tubulanus riceae new species (Nemertea: Anopla: Palaeonemertea: Tubulanidae), from South Florida, Belize and Panama. J Nat Hist 40:931–942

    Article  Google Scholar 

  • Ruppert EE (1978) A review of metamorphosis of turbellarian larvae. In: Chia F-S, Rice ME (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York, pp 65–82

    Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Meth 9:676–682

    Article  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith JE (1935) Memoirs: the early development of the nemertean Cephalothrix rufifrons. Q J Microsc Sci 2:335–381

    Google Scholar 

  • Storch V, Moritz K (1971) Zur Feinstruktur der Sinnesorgane von Lineus ruber OF Müller (Nemertini, Heteronemertini). Cell Tissue Res 117:212–225

    CAS  Google Scholar 

  • Thollesson M, Norenburg JL (2003) Ribbon worm relationships: a phylogeny of the phylum Nemertea. Proc Biol Sci 270:407–415. https://doi.org/10.1098/rspb.2002.2254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vernet G (1970) Ultrastructure des photorécepteurs de Lineus ruber (O.F. Müller)(Hétéronémertes Lineïdae). Cell Tissue Res 104:494–506

    CAS  Google Scholar 

  • Vernet G (1974) Étude ultrastructurale de cellules présumées photoréceptrices dans les ganglions cérébroïdes des Lineidae (Hétéronemertes). Ann des Sci Nat Biol Anim 16:27–36

    Google Scholar 

  • von Döhren J (2008) Zur Phylogenie der Nemertea: Vergleichende Untersuchungen der Reproduktion und Entwicklung. Dissertation, Freie Universität Berlin

  • von Döhren J (2015) Nemertea. In: Wanninger A (ed) Evolutionary Developmental Biology of Invertebrates: vol 2 Lophotrochozoa (Spiralia). Springer, Wien, pp 155–192

    Chapter  Google Scholar 

  • von Döhren J (2016) Development of the nervous system of Carinina ochracea (Palaeonemertea, Nemertea). PLoS One 11:23

    Google Scholar 

  • von Döhren J, Bartolomaeus T ((2007) Ultrastructure and development of the rhabdomeric eyes in Lineus viridis (Heteronemertea, Nemertea). Zoology 110:430–438. https://doi.org/10.1016/j.zool.2007.07.006

    Article  Google Scholar 

  • Woollacott RM, Eakin RM (1973) Ultrastructure of a potential photoreceptoral organ in the larva of an entoproct. J Ultrastruct Res 43:412–425

    Article  PubMed  CAS  Google Scholar 

  • Woollacott RM, Zimmer RL (1972) Fine structure of a potential photoreceptor organ in the larva of Bugula neritina (Bryozoa). Cell Tissue Res 123:458–469

    Google Scholar 

Download references

Acknowledgements

The staff of the Station de Biologie Marine et Marinarium de Concarneau is gratefully acknowledged for providing facilities while collecting and rearing of Procephalothrix oestrymnicus.

Funding

The investigation was financially supported by the German Research Council (DFG, Ba 1520/11-1,2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn von Döhren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. We neither used endangered species nor were the investigated animals collected in protected areas. All animals were collected with the permission of the local marine biological station, the Station de Biologie Marine, Concarneau (France).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Döhren, J., Bartolomaeus, T. Unexpected ultrastructure of an eye in Spiralia: the larval ocelli of Procephalothrix oestrymnicus (Nemertea). Zoomorphology 137, 241–248 (2018). https://doi.org/10.1007/s00435-017-0394-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-017-0394-3

Keywords

Navigation