Skip to main content
Log in

Polymer treatment in the flowing afterglow of an oxygen microwave discharge: Active species profile concentrations and kinetics of the functionalization

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The surface treatment of different polymers and their corresponding model surfaces in the flowing afterglow of an oxygen microwave plasma is investigated. The concentration profiles of tire long-lived species issued from the plasma are measured and calculated in the downstream area The influence of atomic and singlet molecular oxygen in the behavior of different polymers is investigated. It appears that the evolution of the surface energy can be explained by an initiation of the functionalization by the oxygen atoms impinging upon the surface followed by reaction of the radicals formed with molecular oxygen. The concentration of functions at the sureface is limited due to their destruction by reaction with oxygen atoms. Furthermore, the functionalization level is higher in the /lowing afterglow than in the plasma, without any significant degradation of the polymer surface. Therefore, the treatment in the flowing afterglow is more efficient to increase suface energy in particular, for polymers which undergo high backbone chain scission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Biedermann and Y. Osada,Adv. Polym. Sci. 95, 57 (1990).

    Google Scholar 

  2. H. V. Boenig, inFundamentals of Plasma Chemistry and Technology (Technomic Publishing Company Inc., Lancaster, Pennsylvania, 1988).

    Google Scholar 

  3. F. Poncin-Epaillard, B. Chevet, and J-C. Brosse,Eur. Polym. J. 3, 333 (1988).

    Google Scholar 

  4. M. A. Golub, T. Wydeven, and R. D. Cormia,Polymer 30, 1571 (1989).

    Google Scholar 

  5. R. Foerch, N. S. McIntyre, R. N. S. Sodhi, and D. H. Hunter,J. Appl. Polym. Sci. 40, 1903 (1990).

    Google Scholar 

  6. R. Foerch and D. Johnson,Surf. Interface Anal. 17, 847 (1991).

    Google Scholar 

  7. F. Clouet and M. K. Shi,J. Appl. Polym. Sci. 46, 1955 (1992).

    Google Scholar 

  8. A. Granier, S. Pasquiers, C. Brosse-Laporte, R. Darchicourt, P. Leprince, and I. Marec,J. Phys. D 22, 1487 (1989).

    Google Scholar 

  9. F. Clouet, M. K. Shi, R. Prat, Y. Hoff, P. Marie, D. Léonard, Y. De Puydt, P. Bertrand, J. L. Devez, and A. Doren,J. Adhesion Sci. Technol. 8, 329–361 (1994).

    Google Scholar 

  10. S. Wu,J. Polym. Sci., Polym. Symp. 34, 19 (1971).

    Google Scholar 

  11. G. Gousset, P. Panafieu, M. Touzeau, and M. Vialle,Plasma Chem. Plasma Process. 7, 293 (1987).

    Google Scholar 

  12. S. Hadj-Ziane, B. Held, P. Pignolet, R. Peyrous, J. M. Benas, and C. Coste,J. Phys. D 23, 1390 (1990).

    Google Scholar 

  13. P. H. Vidaud, R. P. Wayne, and M. Yaron,Chem. Phys. Lett. 38, 306 (1976).

    Google Scholar 

  14. D. Baulch, R. Cox, P. Crutzen, R. Hampson, I. Kerr, J. Troe, and R. Whatson,J. Phys. Chem. Ref. Data 11, 327 (1982).

    Google Scholar 

  15. B. Eliasson, Brown Boveri Report KRL83-40C,Electrical Discharge in Oxygen, CH-5405 Baden, Switzerland (1983).

  16. A. Granier, inMicrowave Discharges: Fundamentals and Applications (Plenum Press, New York, 1993), pp. 491–501.

    Google Scholar 

  17. D. C. Astholz, A. E. Croce, and J. Trive,J. Phys. Chem. 86, 696 (1982).

    Google Scholar 

  18. J. E. Frederick and R. J. Cicerone,J. Geophys. Res. 90, No. D6, 10733 (1985).

    Google Scholar 

  19. P. N. Pokholak, P. M. Vohlyaev, O. N. Karpukhin, and S. D. Razumovskii,Vysokoniol. Soedin. B 11, 692 (1969).

    Google Scholar 

  20. R. L. Sharpless, L. E. Jusinski, and T. G. Slanger,J. Client. Phys. 91, 7936 (1989).

    Google Scholar 

  21. R. L. Sharpless, L. E. Jusinski, and T. G. Slanger,J. Chem. Phys. 91, 7947 (1989).

    Google Scholar 

  22. A. Höllander, I. Behnish, and H. Zimmermann,J. Appl. Polym. Sci. 49, 1857 (1992).

    Google Scholar 

  23. P. Andersen and A. C. Luntz,J. Chem. Phys. 72, 5842 (1980).

    Google Scholar 

  24. J. Petruj and I. Marchall,Radiat. Phys. Chem. 16, 27 (1980).

    Google Scholar 

  25. M. K. Shi, J. Christoud, Y. Holl, and F. Clouet,J. Macromol. Sci., Pure Appl. Chem. A30, 219 (1993).

    Google Scholar 

  26. R. E. Huie and J. T. Herron,Prog. React. Kinet. 1, 157 (1975).

    Google Scholar 

  27. F. Clouet and M. K. Shi,J. Appl. Polym. Sci. 46, 2063 (1992).

    Google Scholar 

  28. B. Ranby and J. F. Rabek, inPhotodegradation, Photo-oxidation, and Photostabilization of Polymers (Wiley-Interscience, New York, 1975), pp. 120–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Died April 27, 1993.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Normand, F., Granier, A., Leprince, P. et al. Polymer treatment in the flowing afterglow of an oxygen microwave discharge: Active species profile concentrations and kinetics of the functionalization. Plasma Chem Plasma Process 15, 173–198 (1995). https://doi.org/10.1007/BF01459695

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01459695

Key words

Navigation