Skip to main content
Log in

Electron scattering and dissociative attachment by SF6 and its electrical-discharge by-products

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Discrete electron-molecule processes relevant to SF6 etching plasmas are examined. Absolute, total scattering cross sections for 0.2–12-eV electrons on SF6, SO2, SOF2, SO2F2, SOF4, and SF4, as well as cross sections for negative-ion formation by attachment of electrons, have been measured. These are used to calculate dissociative-attachment rate coefficients as a function ofE/N for SF6 by-products in SF6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Y. Chu,IEEE Trans. Electr. Insul. EI-21, 693 (1986); W. Rüegsegger, R. Meier, F. K. Kneubühl, and H. J. Schötzau,Appl. Phys. B 37, 115 (1985).

    Google Scholar 

  2. J. J. Wagner and W. W. Brandt,Plasma Chem. Plasma Process. 1, 201 (1981); K. M. Eisele,J. Electrochem. Soc. 128, 123 (1981); G. S. Oehrlein, K. K. Chan, M. A. Jaso, and G. W. Rubloff,J. Vac. Sci. Technol. A 7, 1030 (1989).

    Google Scholar 

  3. S. Park, C. Sun, and R. J. Purtell,J. Vac. Sci. Technol, B 5, 1372 (1987); L. E. Kline,IEEE Trans. Plasma Sci 14, 145 (1986).

    Google Scholar 

  4. A. Picard, G. Turban, and B. Grolleau,J. Phy. D 19, 991 (1986).

    Google Scholar 

  5. A. Manenschijn, G. C. A. M. Janssen, E. van der Drift, and S. Radelaz,J. Appl. Phys. 65, 3226 (1989).

    Google Scholar 

  6. R. d'Agostino and D. L. Flamm,J. Appl. Phys. 52, 162 (1981).

    Google Scholar 

  7. A. Picard, and G. Turban,Plasma Chem. Plasma Process. 5, 333 (1985).

    Google Scholar 

  8. G. Turban and M. Rapeaux,J. Electrochem. Soc. 130, 2231 (1983).

    Google Scholar 

  9. A. Stamatovic and G. J. Schulz,Rev. Sci. Instrum. 41, 423 (1970); M. R. McMillan and J. H. Moore,ibid,51, 944 (1980); G. J. Schulz,Phys. Rev. A 5, 1672 (1972).

    Google Scholar 

  10. H.-X. Wan, J. H. Moore, and J. A. Tossell,J. Chem. Phys. 91, 7340 (1989).

    Google Scholar 

  11. H.-X. Wan, J. H. Moore, and J. A. Tossell,J. Chem. Phys. 94, 1868 (1991).

    Google Scholar 

  12. A. R. Johnston and P. D. Burrow,J. Electron Spectrosc. Relat. Phenom. 25, 119 (1982).

    Google Scholar 

  13. R. E. Kennerly, R. A. Bonham, and M. McMillan,J Chem. Phys. 70, 2039 (1979).

    Google Scholar 

  14. M. S. Dababneh, Y.-F. Hsieh, W. E. Kaupilla, C. K. Kwan, S. J. Smith, T. S. Stein, and M. N. Uddin,Phys. Rev. A 38, 1207 (1988).

    Google Scholar 

  15. J. Ferch, W. Raith and K. Schröder, J. Phys. B15, L175 (1982).

    Google Scholar 

  16. F. C. Fehsenfeld,J. Chem. Phys. 53, 2000 (1970).

    Google Scholar 

  17. P. J. Hay,J. Chem. Phys. 76, 502 (1982).

    Google Scholar 

  18. L. G. Christophorou, D. L. McCorkle, and J. G. Carter,J. Chem. Phys. 54, 253 (1971); D. L. McCorkle, A. A. Christodoulides, L. G. Christophorou, and I. Szamrej,ibid.,72, 4049 (1980).

    Google Scholar 

  19. M. Fenzloff, R. Gehard, and E. Illenberger,J. Chem. Phys. 88, 149 (1988).

    Google Scholar 

  20. A. Chutjian and S. H. Alajajian,Phys. Rev. A 31, 2885 (1985); O. J. Orient and A. Chutjian,ibid,34, 1841 (1986).

    Google Scholar 

  21. L. E. Kline, D. K. Davis, C. L. Chen, and P. J. Chantry,J. Appl. Phys. 50, 6789 (1979).

    Google Scholar 

  22. D. Rapp and P. Englander-Golden,J. Chem. Phys. 43, 1464 (1965).

    Google Scholar 

  23. S. R. Hunter, J. G. Carter, and L. G. Christophorou,J. Chem. Phys. 90, 4879 (1989).

    Google Scholar 

  24. R. W. Odom, D. L. Smith, and J. H. Futrell,J. Phys. B 8, 1349 (1975); J. E. Delmore and L. D. Appelhans,J. Chem. Phys. 84, 6238 (1986).

    Google Scholar 

  25. Y. Wang, R. L. Champion, L. D. Doverspike, J. K. Olthoff, and R. J. Van Brunt,J. Chem. Phys. 91, 2254 (1989).

    Google Scholar 

  26. A. V. Phelps and R. J. Van Brunt, J. Appl. Phys.64, 4269 (1988).

    Google Scholar 

  27. J. P. Novak and M. F. Fréchette,J. Appl. Phys. 55, 107 (1984).

    Google Scholar 

  28. T. Yoshizawa, Y. Sakai, H. Tagashira, and S. Sakamoto, J. Phys. D12, 1839 (1979).

    Google Scholar 

  29. C. Szmytkowski and K. Maciag,Chem. Phys. Lett. 124, 463 (1986).

    Google Scholar 

  30. M. Zubek, S. Kadifachi, and J. B. Hasted, inBook of Abstracts of the European Conference on Atomic Physics, J. Kowalski, G. zu Putlitz, and H. G. Weber, eds., Heidelberg (1981), p. 763.

  31. V. F. Sokolov and Y. A. Sokilova,Sov. Tech. Phys. Lett. 7, 268 (1981).

    Google Scholar 

  32. O. J. Orient, I. Iger, and S. K. Srivastava,J. Chem. Phys. 77, 3523 (1982).

    Google Scholar 

  33. O. J. Orient and S. K. Srivastava,J. Chem. Phys. 80, 140 (1984).

    Google Scholar 

  34. L. Vusković and S. Trajmar,J. Chem. Phys. 77, 5436 (1982).

    Google Scholar 

  35. L. Sanche and G. J. Schulz,J. Chem. Phys. 58, 79 (1973).

    Google Scholar 

  36. L. Andrić, I. M. Čadež, R. I. Hall, and M. Zubek,J. Phys. B 16, 1837 (1983).

    Google Scholar 

  37. I. M. Čadež, V. M. Pejčev, and M. V. Kurepa,J. Phys. D 16, 305 (1983).

    Google Scholar 

  38. O. J. Orient and S. K. Srivastava,J. Chem. Phys. 78, 2949 (1983).

    Google Scholar 

  39. S. M. Spyrou, I. Sauers, and L. G. Christophorou,J. Chem. Phys. 84, 239 (1986).

    Google Scholar 

  40. J. Rademacher, L. G. Christophorou, and R. P. Blaunstein,J. Chem. Soc. Faraday Trans. II,71, 1212 (1975).

    Google Scholar 

  41. G. H. Dunn,Phys. Rev. Lett. 8, 62 (1962).

    Google Scholar 

  42. T. F. O'Malley and H. S. Taylor,Phys. Rev. 176, 207 (1968).

    Google Scholar 

  43. R. J. Van Brunt and L. J. Kieffer,Phys. Rev. A 2, 1899 (1970).

    Google Scholar 

  44. J. A. Tossell,Chem. Phys. 154, 211 (1991).

    Google Scholar 

  45. A. Benitez, J. H. Moore, and J. A. Tossell,J. Chem. Phys. 88, 6691 (1988).

    Google Scholar 

  46. I. Sauers, L. G. Christophorou, and S. M. Spyrou,Plasma Chem. Plasma Process.,13, 17 (1993).

    Google Scholar 

  47. J. S. Wang and J. L. Franklin,Int. J. Mass. Spectrom. Ion Phys. 36, 233 (1980).

    Google Scholar 

  48. P. G. Datskos and L. G. Christophorou,J. Chem. Phys. 90, 2626 (1989).

    Google Scholar 

  49. P. W. Harland and J. C. J. Thynne,J. Phys. Chem. 75, 3517 (1971).

    Google Scholar 

  50. L. M. Babcock and G. E. Streit,J. Phys. Chem. 86, 1240 (1982).

    Google Scholar 

  51. T. M. Miller, A. E. S. Miller, and X. Liu,Abstracts of Contributed Papers, 17th International Conference on the Physics of Electronics and Atomic Collisions, J. E. McCarthy, W. R. MacGillivray, and M. C. Standage, eds. (1991), p. 260.

  52. R. J. Van Brunt,J. Res. Natl. Bur. Stand. 90, 229 (1985); R. J. Van Brunt and M. C. Siddagangappa,Plasma Chem. Plasma Process. 8, 207 (1988).

    Google Scholar 

  53. A. Derdouri, J. Casanovas, R. Hergli, R. Grob, and J. Mathieu,J. Appl. Phys. 65, 1852 (1989).

    Google Scholar 

  54. I. Sauers,Plasma Chem. Plasma Process. 8, 247 (1988).

    Google Scholar 

  55. R. I. Van Brunt and J. T. Herron,IEEE Trans. Electr. Insul. 25, 75 (1990).

    Google Scholar 

  56. D. B. Ogle and G. A. Woolsey,J. Phys. D. 20, 453 (1987).

    Google Scholar 

  57. C. L. Chen and P. J. Chantry,J. Chem. Phys. 71, 3897 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, H.X., Moore, J.H., Olthoff, J.K. et al. Electron scattering and dissociative attachment by SF6 and its electrical-discharge by-products. Plasma Chem Plasma Process 13, 1–16 (1993). https://doi.org/10.1007/BF01447167

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447167

Key words

Navigation