Skip to main content
Log in

Exact density of states for lowest Landau level in white noise potential superfield representation for interacting systems

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The density of states of two-dimensional electrons in a strong perpendicular magnetic field and white-noise potential is calculated exactly under the provision that only the states of the free electrons in the lowest Landau level are taken into account. It is used that the integral over the coordinates in the plane perpendicular to the magnetic field in a Feynman graph yields the inverse of the number λ of Euler trails through the graph, whereas the weight by which a Feynman graph contributes in this disordered system is λ times that of the corresponding interacting system. Thus the factors λ cancel which allows the reduction of thed dimensional disordered problem to a (d-2) dimensional φ4 interaction problem. The inverse procedure and the equivalence of disordered harmonic systems with interacting systems of superfields is used to give a mapping of interacting systems withU(1) invariance ind dimensions to interacting systems with UPL(1,1) invariance in (d+2) dimensions. The partition function of the new systems is unity so that systems with quenched disorder can be treated by averaging exp(−H) without recourse to the replica trick.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando, T., Matsumoto, Y., Uemura, Y.: J. Phys. Soc. Jpn.39, 279 (1975)

    Google Scholar 

  2. von Klitzing, K., Dorda, G., Pepper, M.: Phys. Rev. Lett.45, 494 (1980)

    Google Scholar 

  3. Ando, T.: Anderson localisation. In: Springer Series in Solid-State Sciences. Nagaoka, Y., Fukuyama, H. (eds.) Vol. 39, p. 176, Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  4. Thouless, D.J., p. 191,

    Google Scholar 

  5. Imry, Y.:, p. 198,

    Google Scholar 

  6. Ono, Y.: p. 207,

    Google Scholar 

  7. Ando, T.: J. Phys. Soc. Jpn.37, 622 (1974)

    Google Scholar 

  8. Lloyd, P., J. Phys. C2, 1717 (1969)

    Google Scholar 

  9. Euler, L.: Comm. Acad. Sci. Petropolitanae8, 128 (1736); Opera OmniaI-7, 1 (1766)

    Google Scholar 

  10. Kasteleyn, P.W.: In: Graph theory and theoretical physics. Harary, F. (ed.), p. 44. New York, London: Academic Press 1967

    Google Scholar 

  11. Harary, F., Graph theory, p. 204. Reading: Addison-Wesley 1969

    Google Scholar 

  12. Harary, F., Palmer, E.M.: Graphical enumeration. p. 25. New York, London: Academic Press 1973

    Google Scholar 

  13. McKane, A.J.: Phys. Lett.76A, 22 (1980)

    Google Scholar 

  14. Efetov, K.B.: Zh. Eksp. Teor. Fiz.82, 872 (1982); Sov. Phys. JETP55, 514 (1982)

    Google Scholar 

  15. Ziegler, K.: Z. Phys. B-Condensed Matter48, 293 (1982)

    Google Scholar 

  16. Wegner, F.: Z. Phys. B-Condensed Matter49, 297 (1983)

    Google Scholar 

  17. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge: Cambridge University Press 1934

    Google Scholar 

  18. Kac, M.: Ark. Fys. Semin. Trondheim11, 1 (1968)

    Google Scholar 

  19. Lin, T.F.: J. Math. Phys.11, 1584 (1970)

    Google Scholar 

  20. Edwards, S.F.: In: Proceedings of the Third International Conference on Amorphous Materials 1970. Douglas, R.W., Ellis, B. (eds.). New York: Wiley 1972

    Google Scholar 

  21. Imry, Y., Mas, S.K.: Phys. Rev. Lett.35, 1399 (1975)

    Google Scholar 

  22. Young, A.P.: J. Phys. C10, L257 (1977)

    Google Scholar 

  23. Parisi, G., Sourlas, N.: Phys. Rev. Lett.43, 744 (1979)

    Google Scholar 

  24. Smith, C.A.B., Tutte, W.T.: Am. Math. Monthly48, 233 (1941)

    Google Scholar 

  25. Rittenberg, V., Scheunert, M.: J. Math. Phys.19, 709 (1978)

    Google Scholar 

  26. van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Simon Stevin Wis. Natuurkd. Tijdschr.28, 203 (1951)

    Google Scholar 

  27. Matsubara, T.: Prog. Theor. Phys.14, 351 (1955)

    Google Scholar 

  28. Abrikosov, A.A., Gorkev, L.P., Dzyaloshinski, I.E.: Zh. Eksp. Teor. Fiz.36, 900 (1959); Sov. Phys. JETP9, 636 (1959)

    Google Scholar 

  29. Fradkin, E.S.: Zh. Teor. Fiz.36, 1286 (1959); Sov. Phys. JETP9, 912 (1959)

    Google Scholar 

  30. Abrikosov, A.A., Gorkov, L.P., Dzyaloskinski, I.E.: Methods of quantum field theory in statistical physics. Englewood Cliffs: Prentice Hall 1964

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the DFG through SFB123 “Stochastic Mathematical Models”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegner, F. Exact density of states for lowest Landau level in white noise potential superfield representation for interacting systems. Z. Physik B - Condensed Matter 51, 279–285 (1983). https://doi.org/10.1007/BF01319209

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01319209

Keywords

Navigation