Skip to main content
Log in

Localization in the Ground State of an Interacting Quasi-Periodic Fermionic Chain

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a one dimensional many body fermionic system with a large incommensurate external potential and a weak short range interaction. We prove, for chemical potentials in a gap of the non interacting spectrum, that the zero temperature thermodynamical correlations are exponentially decaying for large distances, with a decay rate much larger than the gap; this indicates the persistence of localization in the interacting ground state. The analysis is based on the renormalization group, and convergence of the renormalized expansion is achieved using fermionic cancellations and controlling the small divisor problem assuming a Diophantine condition for the frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  2. Froehlich J., Spencer T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88, 151 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Aizenman M., Molchanov S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157, 245 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aubry S., André G.: Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Isr. Phys. Soc 3, 133 (1980)

    MathSciNet  MATH  Google Scholar 

  5. Dinaburg E., Sinai Y.: The one-dimensional Schrdinger equation with a quasiperiodic potential. Funct. Anal. Appl. 9, 279 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pastur L.: Spectra of random self-adjoint operators. Russ. Math. Surveys 28, 1 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Eliasson L.H.: Floquet solutions for the 1-dimensional quasi-periodic Schroedinger equation. Commun. Math. Phys 146, 447 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bellissard J., Lima R., Testard D.: A metal-insulator transition for the almost Mathieu model. Commun. Math. Phys. 88, 207 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Sinai Ya.: Anderson Localization for one dimensional difference Schroedinger operator with quasiperiodic potential. J. Stat. Phys. 46, 861 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  10. Froehlich J., Spencer T., Wittvwer T.: Localization for a class of one-dimensional quasi-periodic Schrdinger operators. Commun. Math. Phys. 132(1), 5 (1990)

    Article  ADS  Google Scholar 

  11. Avila, A., Jitomirskaya, S.: The ten Martin problem. Ann. Math. 170, 303 (2009)

  12. Fleishmann L., Anderson P.W.: Interactions and the Anderson transition. Phys. Rev. B 21, 2366 (1980)

    Article  ADS  Google Scholar 

  13. Giamarchi T., Schulz H.J.: Localization and interaction in onedimensional quantum fluids. Europhys. Lett. 3, 1287 (1987)

    Article  ADS  Google Scholar 

  14. Gornyi I., Mirlin A., Polyakov D.: Interacting electrons in disordered wires. Phys. Rev. Lett. 9, 206603 (2005)

    Article  ADS  Google Scholar 

  15. Vidal J., Mouhanna D., Giamarchi T.: Correlated Fermions in a one-dimensional quasiperiodic potential. Phys. Rev. Lett. 83, 3908 (1999)

    Article  ADS  Google Scholar 

  16. Basko D.M., Alteiner I., Altshuler B.L.: Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126 (2006)

    Article  ADS  MATH  Google Scholar 

  17. Oganesyan V., Huse D.A.: Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007)

    Article  ADS  Google Scholar 

  18. Znidaric M., Prosen T., Prelovek P.: Localization in the Heisenberg Magnet in a Random Field. Phys. Rev. B 77, 064426 (2008)

    Article  ADS  Google Scholar 

  19. Pal A., Huse D.A.: Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010)

    Article  ADS  Google Scholar 

  20. Ros, V., Mueller, M., Scardicchio, A.: Integrals of motion in the many-body localized phase. Nucl. Phys. B 420 (2015)

  21. Nandkshore R., Huse D.A.: Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15 (2015)

    Article  ADS  Google Scholar 

  22. Iyer S., Oganesyan V., Refael G., Huse D.A.: Many-body localization in a quasiperiodic system. Phys. Rev. B 87, 134202 (2013)

    Article  ADS  Google Scholar 

  23. Klein A., Perez J.F.: Localization in the ground state of a disordered array of quantum rotators. Commun. Math. Phys. 147, 241 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Klein A., Perez J.F.: Localization in the ground-state of the one-dimensional X-Y model with a random transverse field. Commun. Math. Phys. 147(1), 99 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Fauser M., Warzel S.: Multiparticle localization for disordered systems on continuous space via the fractional moment method. Rev. Math. Phys. 27, 1550010 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Imbrie, J.: On many-body localization for quantum spin chains. arXiv:1403.7837

  27. Spencer, T.: Talk at a conference in Rome (2012)

  28. De Roeck W., Huveneers F.: Asymptotic quantum many-body localization from thermal disorder. Commun. Math. Phys. 332(3), 1017 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Gallavott G.: Twistless KAM tori. Commun. Math. Phys. 164(1), 145 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Gentile G., Mastropietro V.: Methods for the analysis of the Lindstedt series for KAM tori and renormalizability in classical mechanics. A review with some applications. Rev. Math. Phys. 8(3), 393 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Benfatto, G., Gentile, G., Mastropietro, V.: Electrons in a lattice with an incommensurate potential. J. Stat. Phys. 89, 655 (1997)

  32. Gentile G., Mastropietro V.: Anderson localization for the Holstein model. Commun. Math. Phys. 215, 69 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Mastropietro V.: Small denominators and anomalous behaviour in the incommensurate Hubbard–Holstein model. Commun. Math. Phys. 201, 81 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Roati G., D’Errico C., Fallani L., Fattori M., Fort C., Zaccanti M., Modugno G., Modugno M., Inguscio M.: Anderson localization of a non-interacting Bose–Einstein condensate. Nature 453, 895 (2008)

    Article  ADS  Google Scholar 

  35. Benfatto G., Falco P., Mastropietro V.: Universality of one-dimensional Fermi systems, I. Response functions and critical exponents. Commun. Math. Phys. 330, 153 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Benfatto G., Mastropietro V.: Renormalization group, hidden symmetries and approximate Ward identities in the XYZ model. Rev. Math. Phys. 13, 1323 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vieri Mastropietro.

Additional information

Communicated by R. Seiringer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastropietro, V. Localization in the Ground State of an Interacting Quasi-Periodic Fermionic Chain. Commun. Math. Phys. 342, 217–250 (2016). https://doi.org/10.1007/s00220-015-2498-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2498-2

Keywords

Navigation