Skip to main content
Log in

Pollen exine development precedes microtubule rearrangement inVigna unguiculata (Fabaceae): A model for pollen wall patterning

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Although patterns on pollen exines are highly conserved, heritable traits, there is no prevailing explanation for control of pattern development. InVigna unguiculata (Fabaceae), the exine reticulum is unusually coarse so that development of the reticulum can be followed by light microscopy. Developing exine patterns were compared with the arrangement of microtubules in the microspore using immunofluorescence labeling of microtubules. Exine pattern developed in microspores at stages with a regular microtubule pattern. At later stages of exine formation, microtubules were arranged in patches under the lumina of the reticulum. We conclude that microtubules do not determine exine pattern. The developing exine appears to rearrange microtubules. We interpret this as evidence for the selfpatterning of exine based on intrinsic properties of the matrix between the microspore and the callose wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DIC:

differential interference contrast

ECM(s):

extracellular matrix(ces)

MT(s):

microtubule(s)

PBS:

phosphate buffered saline

SEM:

scanning electron microscopy

References

  • Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development 117: 1183–1198

    Google Scholar 

  • Bajer AS, Cypher C, Molé-Bajer J, Howard HM (1982) Taxolinduced anaphase reversal: evidence that elongating microtubules can exert a pushing force in living cells. Proc Natl Acad Sci USA 79: 6569–6573

    Google Scholar 

  • Baskin TI, Busby CH, Fowke LC, Sammut M, Gubler F (1992) Improvements in immunostaining samples embedded in mediac- rylate — localization of microtubules and other antigens throughout developing organs in plants of diverse taxa. Planta 187: 405–413

    Google Scholar 

  • Blackmore S, Barnes SH (1990) Pollen wall development in angio-sperms. In: Blackmore S, Knox RB (eds) Microspores: evolution and ontogeny. Academic Press, London, pp 173–192

    Google Scholar 

  • Brown RC, Lemmon BE, Mullinax JB (1989) Immunofluorescent staining of microtubules in plant tissues: improved embedding and sectioning techniques using polyethylene glycol (PEG) and Steedman's wax. Bot Acta 102: 54–61

    Google Scholar 

  • Dickinson HG, Sheldon JM (1984) A radial system of microtubules extending between the nuclear envelope and the plasma membrane during early male haplophase in flowering plants. Planta 161: 86–90

    Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy. Angiosperms. Almqvist and Wiksell, Stockholm

    Google Scholar 

  • Heslop-Harrison J (1963) An ultrastructural study of pollen wall ontogeny inSilene pendula. Grana Palynol 4: 1–24

    Google Scholar 

  • — (1971) Wall pattern formation in angiosperm microsporogenesis. Symp Soc Exp Biol 25: 277–300

    Google Scholar 

  • Horvat F, Stainier F (1979) L'etude de l'exine dans le complexePhaseolus-Vigna et dans des genres apparentes. III. Pollen Spores 21: 17–30

    Google Scholar 

  • Ingber D (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104: 613–627

    Google Scholar 

  • Muñoz CA, Webster BD, Jernstedt JA (1995) Spatial congruence between exine pattern, microtubules and endomembranes inVigna pollen. Sex Plant Reprod 8: 147–151

    Google Scholar 

  • Nepi M, Pacini E (1993) Pollination, pollen viability and pistil receptivity inCucurbita pepo. Ann Bot 72: 527–536

    Google Scholar 

  • Palevitz BA (1991) Potential significance and microtubule rearrangement, translocation and reutilization in plant cells. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, New York, pp 45–55

    Google Scholar 

  • Pérez-Muñoz CA, Jernstedt JA, Webster BD (1993 a) Pollen wall development inVigna vexillata I. Characterization of wall layers. Amer J Bot 80: 1183–1192

    Google Scholar 

  • — — — (1993 b) Pollen wall development inVigna vexillata II. Ultrastructural studies. Amer J Bot 80: 1193–1202

    Google Scholar 

  • Sheldon JM, Dickinson HG (1983) Determination of patterning in the pollen wallof Lilium henryi. J Cell Sci 63: 191–208

    Google Scholar 

  • — — (1986) Pollen wall formation inLilium: the effect of chaotropic agents, and the organisation of the microtubular cytoskeleton during pattern development. Planta 168: 11–23

    Google Scholar 

  • Sims JR, Karp S, Ingber DE (1992) Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape. J Cell Sci 103: 1215–1222

    Google Scholar 

  • Smith-Huerta NL, Jernstedt JA (1989) Root contraction in hyacinth. III. Orientation of cortical microtubules visualized by immuno-fluorescence microscopy. Protoplasma 151: 1–10

    Google Scholar 

  • Southworth D (1990) Exine biochemistry. In: Blackmore S, Knox RB (eds) Microspores: evolution and ontogeny. Academic Press, New York, pp 193–212

    Google Scholar 

  • Stainier F, Horvat F (1978 a) L'etude de l'exine dans le complexePhaseolus-Vigna et dans des genres apparentes. I. Pollen Spores 20: 195–214

    Google Scholar 

  • — — (1978 b) L'etude de l'exine dans le complexePhaseolus-Vigna et dans des genres apparentes. II. Pollen Spores 20: 341–349

    Google Scholar 

  • Takahashi M (1989) Pattern determination of the exine inCaesalpinia japonica (Leguminosae: Caesalpinioideae). Amer J Bot 76: 1615–1626

    Google Scholar 

  • —, Skvarla JJ (1991) Exine pattern formation by plasma membrane inBougainvillea spectabilis Willd. (Nyctaginaceae). Amer J Bot 78: 1063–1069

    Google Scholar 

  • Tiwari SC (1989) Cytoskeleton during pollen development inTradescantia virginiana: a study employing chemical fixation, freeze-substitution, immunofluorescence, and colchicine administration. Can J Bot 67: 1244–1253

    Google Scholar 

  • —, Gunning BES (1986) Colchicine inhibits plasmodium formation and disrupts pathways of sporopollenin secretion in the anther tapetum ofTradescantia virginiana L. Protoplasma 133: 115–128

    Google Scholar 

  • —, Polito VS (1990) The initiation and organization of microtubules in germinating pear (Pyrus communis L.) pollen. Eur J Cell Biol 53: 384–389

    Google Scholar 

  • Van Uffelen GA (1991) The control of spore wall formation. In: Blackmore S, Barnes SH (eds) Pollen and spores, patterns of diversification. Clarendon, Oxford, pp 89–102

    Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260: 1124–1127

    Google Scholar 

  • Waterkeyn L, Bienfait A (1970) On a possible function of the callosic special cell wall inIpomoea purpurea (L.) Roth. Grana 10: 13–20

    Google Scholar 

  • Wick SM, Duniec J (1986) Effects of various fixatives on the reactivity of plant cell tubulin and calmodulin in immunofluorescence microscopy. Protoplasma 133: 1–18

    Google Scholar 

  • —, Muto S, Duniec J (1985) Double immunofluorescence labeling of calmodulin and tubulin in dividing plant cells. Protoplasma 126: 198–206

    Google Scholar 

  • Wiermann R, Gubatz S (1992) Pollen wall and sporopollenin. Int Rev Cytol 140: 35–72

    Google Scholar 

  • Williamson RE (1991) Orientation of cortical microtubules in interphase plant cells. Int Rev Cytol 129: 135–206

    Google Scholar 

  • Worrall D, Hird DL, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4: 759–771

    Google Scholar 

  • Wyatt SE, Carpita NC (1993) The plant cytoskeleton—cell-wall continuum. Trends Cell Biol 3: 413–417

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Southworth, D., Jernstedt, J.A. Pollen exine development precedes microtubule rearrangement inVigna unguiculata (Fabaceae): A model for pollen wall patterning. Protoplasma 187, 79–87 (1995). https://doi.org/10.1007/BF01280235

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01280235

Keywords

Navigation