Skip to main content
Log in

Ultrastructural analysis of cell component distribution in the apical cell ofCeratodon protonemata

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

A distinctive feature of tip-growing plant cells is that cell components are distributed differentially along the length of the cell, although most ultrastructural analyses have been qualitative. The longitudinal distribution of cell components was studied both qualitatively and quantitatively in the apical cell of dark-grown protonemata of the mossCeratodon. The first 35 μm of the apical cell was analyzed stereologically using transmission electron microscopy. There were four types of distributions along the cell's axis, three of them differential: (1) tubular endoplasmic reticulum was evenly distributed, (2) cisternal endoplasmic reticulum and Golgi vesicles were distributed in a tip-to-base gradient, (3) plastids, vacuoles, and Golgi stacks were enriched in specific areas, although the locations of the enrichments varied, and (4) mitochondria were excluded in the tipmost 5 μm and evenly distributed throughout the remaining 30 μm. This study provides one of the most comprehensive quantitative, ultrastructural analyses of the distribution of cell components in the apex of any tip-growing plant cell. The finding that almost every component had its own spatial arrangement demonstrates the complexity of the organization and regulation of the distribution of components in tip-growing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CER:

cisternal endoplasmic reticulum

ER:

endoplasmic reticulum

Nd :

numerical density

SE:

standard error

Sv :

surface density

TEM:

transmission electron microscopy

TER:

tubular endoplasmic reticulum

Vv :

volume fraction

References

  • Bartnicki-Garcia S (1990) Role of vesicles in apical growth and a new mathematical model of hyphal morphogenesis. In: Heath, IB (ed) Tip growth in plant and fungal cells. Academic Press, New York, pp 211–232

    Google Scholar 

  • Bartnik E, Sievers A (1988) In-vivo observations of a spherical aggregate of endoplasmic reticulum and Golgi vesicles in the tip of fast-growingChara rhizoids. Planta 176: 1–9

    Google Scholar 

  • Cove DJ, Schild A, Ashton NW, Hartmann E (1978) Genetic and physiological studies of the effect of light on the development of the mossPhyscomitrella patens. Photochem Photobiol 27: 249–254

    Google Scholar 

  • Cresti M, Pacini E, Ciampolini F, Sarfatti G (1977) Germination and early tube development in vitro ofLycopersicon peruvianum pollen: ultrastructural features. Planta 136: 239–247

    Google Scholar 

  • —, Ciampolini F, Mulcahy LM, Mulcahy G (1985) Ultrastructure ofNicotiana alata pollen, its germination and early tube formation. Amer J Bot 72: 719–727

    Google Scholar 

  • DeMaggio AE, Stetler DA (1977) Protonemal organization and growth in the mossDawsonia superba: ultrastructural characteristics. Amer J Bot 64: 449–454

    Google Scholar 

  • Grove SN, Bracker CE, Morré DJ (1970) An ultrastructural basis for hyphal tip growth inPythium ultimum. Amer J Bot 57: 245–266

    Google Scholar 

  • Harold FM, Caldwell JH (1990) Tips and currents: electrobiology of apical growth. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, New York, pp 59–90

    Google Scholar 

  • Hartmann E, Weber M (1988) Storage of the phytochrome-mediated phototropic stimulus of moss protonemal tip cells. Planta 175: 39–49

    Google Scholar 

  • —, Klingenberg B, Bauer L (1983) Phytochrome-mediated phototropism in protonemata of the mossCeratodon purpureus Brid. Photochem Photobiol 38: 599–603

    Google Scholar 

  • Heath IB, Kaminskyj GW (1989) The organization of tip-growth-related organelles and microtubules revealed by quantitative analysis of freeze-substituted oomycete hyphae. J Cell Sci 93: 41–52

    Google Scholar 

  • —, Rethoret K, Arsenault AL, Ottensmeyer FP (1985) Improved preservation of the form and contents of wall vesicles and the Golgi apparatus in freeze substituted hyphae ofSaprolegnia. Protoplasma 128: 81–93

    Google Scholar 

  • Hepler PK, Palevitz BA, Lancelle SA, McCauley MM, Lichtscheidl I (1990) Cortical endoplasmic reticulum in plants. J Cell Sci 96: 355–373

    Google Scholar 

  • Jenkins GI, Courtrice GRM, Cove DJ (1986) Gravitropic responses of wild-type and mutant strains of the mossPhyscomitriella patens. Plant Cell Environ 9: 637–644

    PubMed  Google Scholar 

  • Jensen LC, Jensen CG (1984) Fine structure of protonemal apical cells of the mossPhyscomitrium turbinatum. Protoplasma 122: 1–10

    Google Scholar 

  • Kropf DL, Quatrano RS (1987) Localization of membrane-associated calcium during development of fucoid algae using chlorotetracycline. Planta 171: 158–170

    Google Scholar 

  • Kwon YH, Hoch HC, Aist JR (1991) Initiation of appressorium formation inUromyces appendiculatus: organization of the apex, and the responses involving microtubules and apical vesicles. Can J Bot 69: 2560–2573

    Google Scholar 

  • Merz WA (1967) Die Streckenmessung an gerichteten Strukturen im Mikroskop und ihre Anwendung zur Bestimmung von Oberflächen-Volumen-Relationen im Knochengewebe. Mikroskopie 22: 132–144

    Google Scholar 

  • Miller DD, Callaham DA, Gross DJ, Hepler PK, (1992) Free Ca2+ gradient in growing pollen tubes ofLilium. J Cell Sci 101: 7–12

    Google Scholar 

  • Picton JM, Steer MW (1982) A model for the mechanism of tip extension in pollen tubes. J Theor Biol 98: 15–20

    Google Scholar 

  • — — (1983) The effect of cycloheximide on dictyosome activity inTradescantia pollen tubes determined using cytochalasin D. Eur J Cell Biol 29: 133–138

    PubMed  Google Scholar 

  • Reiss HD, Herth W, Schnepf E (1983) The tip-to-base calcium gradient in pollen tubes ofLilium longiflorum measured by proton-induced X-ray emission (PIXE). Protoplasma 115: 153–159

    Google Scholar 

  • SAS Institute (1985) SAS user's guide: statistics. SAS Institute, Cary, NC

    Google Scholar 

  • Schmiedel G, Schnepf E (1980) Polarity and growth of caulonema tip cells of the mossFunaria hygrometrica. Planta 147: 405–413

    Google Scholar 

  • Schnepf E (1986) Cellular polarity. Annu Rev Plant Physiol 37: 23–47

    Google Scholar 

  • Schwuchow J (1991) Untersuchungen zum Gravitropismus und zur Signalverarbeitung in der Protonemaspitzenzelle des LaubmoosesCeratodon purpureus. PhD dissertation, Johannes-Gutenberg-Universität, Mainz, Federal Republic of Germany

    Google Scholar 

  • —, Sack FD (1993) Effects of inversion on plastid position and gravitropism inCeratodon protonemata. Can J Bot 71: 1243–1248

    PubMed  Google Scholar 

  • — — (1994) Microtubules restrict plastid sedimentation in protonemata of the mossCeratodon. Cell Motil Cytoskeleton 29: 366–374

    PubMed  Google Scholar 

  • —, Sack FD, Hartmann E (1990) Microtubule distribution in gravitropic protonemata of the mossCeratodon. Protoplasma 159: 60–69

    PubMed  Google Scholar 

  • —, Kim D, Sack FD (1995) Caulonemal gravitropism and amyloplast sedimentation in the mossFunaria. Can J Bot 73: 1029–1035

    PubMed  Google Scholar 

  • Sievers A (1967) Elektronenmikroskopische Untersuchungen zur geotropischen Reaktion. Z Pflanzenphysiol 57: 462–473

    Google Scholar 

  • —, Schnepf E (1987) Morphogenesis and polarity of tubular cells with tip growth. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York, pp 265–299 [Alfert M et al (eds) Cell biology monographs, vol 8]

    Google Scholar 

  • Steer M (1981) Understanding cell structure. Cambridge University Press, Cambridge

    Google Scholar 

  • —, Steer JM (1989) Pollen tube tip growth. New Phytol 111: 323–358

    Google Scholar 

  • Tewinkel M, Volkmann D (1987) Observations on dividing plastids in the protonema of the mossFunaria hygrometrica Sibth. Planta 172: 309–320

    Google Scholar 

  • Wada M, O'Brien TP (1975) Observations on the structure of the protonema ofAdiantum capillus-veneris L. undergoing cell division following white-light irradiation. Planta 126: 213–227

    Google Scholar 

  • Walker LM, Sack FD (1990) Amyloplasts as possible statoliths in gravitropic protonemata of the mossCeratodon purpureus. Planta 181: 71–77

    PubMed  Google Scholar 

  • — — (1991) Recovery of gravitropism after basipetal centrifugation in protonemata of the mossCeratodon purpureus. Can J Bot 69: 1737–1744

    PubMed  Google Scholar 

  • Weibel ER (1989) Stereological methods 1: practical methods for biological morphometry. Academic Press, New York

    Google Scholar 

  • Young JC, Sack FD (1992) Time lapse analysis of gravitropism inCeratodon protonemata. Amer J Bot 79: 1348–1358

    Google Scholar 

  • Zalokar M (1959) Growth and differentiation ofNeurospora hyphae. Amer J Bot 46: 602–610

    Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, L.M., Sack, F.D. Ultrastructural analysis of cell component distribution in the apical cell ofCeratodon protonemata. Protoplasma 189, 238–248 (1995). https://doi.org/10.1007/BF01280178

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01280178

Keywords

Navigation