Skip to main content
Log in

Pattern morphogenesis in cell walls of diatoms and pollen grains: a comparison

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Mechanisms acting in pattern morphogenesis in the cell walls of two distant groups of plants, pollen of spermatophytes and diatoms, are compared in order to discriminate common principles from plant group- and wall material-specific features. The exinous wall in pollen is sequentially deposited on the exocellular side of the plasmalemma, while the siliceous wall in diatoms is formed intracellularly within an expanding silica deposition vesicle (SDV) which is attached to the internal face of the plasmalemma. Two levels of patterning occur in diatom and pollen walls: the overall pattern stabilises the wall mechanically and is apparently initiated in both groups by the parent cell, and a microtubule-dependent aperture and portula pattern created by the new mitotic (diatoms) or meiotic (pollen) cells. The parent wall in diatoms, and also the callosic wall in microspores, functions as anchor surfaces for transient, species-specific patterned adhesions of the plasmalemma to these walls, involved in pattern and shape creation. Patterned adhesion and exocytosis is blocked in pollen walls where the plasmalemma is shielded by the endoplasmic reticulum at the sites of the future apertures. In diatoms, wall patterning is uncoupled from the formation of a siliceous wall per se when the SDV and its wall is formed without contact to the the plasmalemma. Conversely, a blue-print pattern laid out in advance along the plasmalemma can be found in several diatoms. This highlights the key function of the plasmalemma and its associated membrane skeleton (fibrous lamina), and its orchestrated co-operation with elements of the radial filamentous cytoskeleton (actin?) in pattern formation. The role of microtubules during generation of the overall pattern may be primarily a transport and stabilizing function. Auxiliary organelles (spacer vesicles, endoplasmic reticulum, mitochondria) involved in diatoms for shaping the SDV, and a mechanism adhering and disconnecting this SDV together with spacer organelles in a species-specifically controlled sequence to and from the plasmalemma, are unnecessary for pollen wall patterning. The precise positioning of the portula pattern in diatom walls is discussed with respect to their role as permanent anchors of the cytoplasm to its wall, and in providing spatial information for nucelar migration and the next cell division, whereas apertures in pollen are for single use only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AF:

actin filaments

C/Ca:

callose

CF:

cleavage furrow

cPL:

cleavage plasmalemma

DV:

dense vesicles

ER:

endoplasmic reticulum

ET:

epitheca

HT:

hypotheca

mPL:

folded plasmalemma

MT:

microtubules

MTOC:

microtubule organising centre

PEV:

primexine (matrix) vesicles

PL:

plasmalemma

SDV:

silica deposition vesicle

Si:

silica

SL:

SDV-membrane

SPV:

spacer vesicles

References

  • Barnes SH, Blackmore S (1986) Some functional features in pollen development. In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic Press, London, pp. 71–80 (Linnean Society symposium series, vol 12)

    Google Scholar 

  • Bhandari NN (1984) The microsporangium. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York Tokyo, pp 53–121

    Google Scholar 

  • Blackmore S (1990) Sporoderm homologies and morphogenesis ofEchinops sphaerocephala (Compositae). Plant Syst Evol Suppl 5: 1–12

    Google Scholar 

  • —, Barnes SH (1987) Pollen wall morphogenesis inTragopogon porrifolius (Compositae: Lactuceae) and its taxonomic significance. Rev Palaeobot Palynol 52: 233–246

    Google Scholar 

  • — — (1988) Pollen ontogeny inCatananche caerulea L. (Compositae: Lactuceae) I. Premeiotic phase to establishment of tetrads. Ann Bot 62: 605–614

    Google Scholar 

  • — — (eds) (1991) Pollen and spores: patterns of diversification. Clarendon Press, Oxford, pp. 1–387 (The Systematics Association special volume 44)

    Google Scholar 

  • —, Ferguson IK (eds) (1986) Pollen and spores: form and function. Academic Press, London (Linnean Society symposium series, vol 12)

    Google Scholar 

  • —, Knox RB (eds) (1990) Microspores: evolution and ontogeny. Academic Press, London

    Google Scholar 

  • —, McConchie CA, Knox RB (1987) Phylogenetic analysis of the male ontogenetic program in aquatic and terrestrial monocotyledons. Cladistics 3: 333–347

    Google Scholar 

  • Brown RC, Lemmon BE (1987) Involvement of callose in determination of exine patterning in three hepatics of the subclass Jungermanniidae. Mem N Y Bot Garden 45: 11–121

    Google Scholar 

  • — — (1992) Control of division plane in normal and griseofulvin-treated microsporocytes ofMagnolia, J Cell Sci 103: 1031–1038

    Google Scholar 

  • Brugerolle G, Bricheux G (1984) Actin microfilaments are involved in scale formation of the chrysomonad cellSynura. Protoplasma 123: 203–212

    Google Scholar 

  • Buchen B, Sievers A (1981) Sporogenesis and pollen grain formation. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York, pp 349–376 (Alfert M et al (eds) Cell biology monographs, vol 8)

    Google Scholar 

  • Crawford, RM, Hinz F (1995) The spines of the centric diatomCorethron criophilum: light microscopy of vegetative cell division. Eur J Phycol 30: 95–105

    Google Scholar 

  • Cresti M, Blackmore S, Went JL van (1992) Atlas of sexual reproduction in flowering plants. Springer, Berlin Heidelberg New York Tokyo, pp 1–249

    Google Scholar 

  • Dickinson HG (1970) Ultrastructural aspects of primexine formation in the microspore tetrad ofLilium longiflorum. Cytobiologie 1: 437–449

    Google Scholar 

  • — (1976) Common factors in exine deposition. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Academic Press, London, pp 27–38 (Linnean Society symposium series, vol 1)

    Google Scholar 

  • —, Bell PR (1970) The development of the sacci during pollen formation inPinus banksiana. Grana 10: 101–108

    Google Scholar 

  • —, Heslop-Harrison J (1977) Ribosomes, membranes and organelles during meiosis in angiosperms. Philos Trans R Soc Lond Biol 277: 327–342

    PubMed  Google Scholar 

  • — — (1968) Common mode of deposition for the sporopollenin of sexine and nexine. Nature 220: 926–927

    PubMed  Google Scholar 

  • —, Potter UJ (1976) The development of patterning in the alveolar sexine ofCosmos bipinnatus. New Phytol 76: 543–550

    Google Scholar 

  • —, Sheldon JM (1984) A radial system of microtubules extending between the nuclear envelope and the plasma membrane during early male haplophase in flowering plants. Planta 161: 86–90

    Google Scholar 

  • — — (1986) The generation of patterning at the plasma membrane of the young microspores inLilium. In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic Press. London, pp 1–17 (Linnean Society symposium series, vol 12)

    Google Scholar 

  • — — (1990) The cell biological basis of exine formation inLilium sp. In: Blanca G, Diaz de la Guardia C, Fernandez MC, Garrido M, Rodriguez-Garcia MI, Romero Garcia AT (eds) Polen, esporas y sus aplicaciones. VII Simposio de Palinologia, Granada, 1988. Universidad de Granada, Granada, pp 17–29

    Google Scholar 

  • Drebes G (1974) Marines Phytoplankton. Eine Auswahl der Helgoländer Planktonalgen (Diatomeen, Peridineen). Thieme, Stuttgart

    Google Scholar 

  • — (1976a, b)Attheya decora (Centrales). Vegetative Vermehrung und geschlechtliche Fortpflanzung, b/w 16mm cine films. Institut für Wissenschaftlichen Film, Göttingen

    Google Scholar 

  • Edgar L, Pickett-Heaps JD (1984) Valve morphogenesis in the pennate diatomNavicula cuspidata. J Phycol 20: 47–61

    Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, Chichester

    Google Scholar 

  • Feijó JA, Malhó R, Obermeyer G (1995) Ion dynamics and its possible role during in vitro germination and tube growth. Protoplasma 187: 155–167

    Google Scholar 

  • Franz SM, Schmid AM (1984) Cell-cycle and phenotypes ofBiddulphiopsis titiana. Diatom Res 9: 265–288

    Google Scholar 

  • French FW, Hargraves PE (1985) Spore formation in the life cycles of the diatomsChaetoceros diadema andLeptocylindrus danicus. J Phycol 21: 447–483

    Google Scholar 

  • Gabarayeva NI, Rowley JR (1994) Exine development inNymphaea colorata (Nymphaeaceae). Nord. J Bot 14: 671–691

    Google Scholar 

  • Gersonde R, Harwood DM (1990) Lower cretaceous diatoms from ODP LEG 113 site 693 (Weddel Sea). Part 1: Vegetative cells. In: Barker PF, Kennett JP (eds) Proceedings of the ocean drilling program, scientific results, vol 113. Texas A&M University, College Station, TX, pp 403–425

    Google Scholar 

  • Gilroy S, Trewavas A (1990) Signal sensing and signal transduction across the plasmamembrane. In: Larsson C, Moller IM (eds) The plant plasma membrane: structure, function and molecular biology. Springer, Berlin Heidelberg New York Tokyo, pp 203–232

    Google Scholar 

  • Gordon R, Brodland GW (1990) On square holes in pennate diatoms. Diatom Res 5: 409–413

    Google Scholar 

  • —, Drum RW (1994) The chemical basis of diatom morphogenesis. Int Rev Cytol 150: 243–372

    Google Scholar 

  • Graybosch RA, Palmer RG (1985a) Male sterility in soybean (Glycine max). I. Am J Bot 72: 1738–1750

    Google Scholar 

  • —, (1985b) Male sterility in soybean (Glycine max). II. Am J Bot 72: 1751–1764

    Google Scholar 

  • Halbritter H, Hesse M (1993) Sulcus morphology in some monocot families. Grana 32: 87–99

    Google Scholar 

  • Hay ED (1991) Cell biology of extracellular matrix. Plenum, New York

    Google Scholar 

  • Herth W, Schnepf E (1982) Chitin-fibril formation in algae. In: Brown RM (ed) Cellulose and other natural products. Plenum, New York, pp 185–206

    Google Scholar 

  • Heslop-Harrison J (1963) An ultrastructural study of pollen wall ontogeny inSilene pendula. Grana Palynol 4: 7–24

    Google Scholar 

  • — (1971a) Wall pattern formation in angiosperm microsporogenesis. Symp Soc Exp Biol 25: 277–300

    PubMed  Google Scholar 

  • — (1971b) The pollen wall: structure and development. In: Heslop-Harrison J (ed) Pollen: development and physiology. Butterworth, London, pp 75–98

    Google Scholar 

  • Hesse M (1991) Cytology and morphogenesis of pollen and spores. Prog Bot 52: 19–34

    Google Scholar 

  • —, (1995) Cytology and morphogenesis of pollen and spores. Prog Bot 56: 33–55

    Google Scholar 

  • Horner HT, Pearson CB (1978) Pollen wall and aperture development inHelianthus annus (Compositae: Heliantheae). Am J Bot 65: 293–309

    Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation, and signalling in cell adhesion. Cell 69: 11–25

    PubMed  Google Scholar 

  • Ingber DE (1993) Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J Cell Sci 104: 613–627

    PubMed  Google Scholar 

  • Kauss H (1996) Callose synthesis. In: Smallwood M, Knox P, Bowles DJ (eds) Membranes: specialized functions in plant cells. Bios Scientific Publishers, Oxford (in press)

    Google Scholar 

  • Knox RB (1984) The pollen grain. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin Heidelberg New York Tokyo, pp 197–271

    Google Scholar 

  • Lacalli TC (1981) Dissipative structures and morphogenetic pattern in unicellular algae. Philos Trans R Soc Lond Biol 294: 547–588

    Google Scholar 

  • Li CW, Volcani BE (1985) Studies on the biochemistry and fine structure of silica shell formation in diatoms. VII. Morphogenesis of the cell wall in a centric diatom,Ditylum brightwellii. Protoplasma 124: 10–29

    Google Scholar 

  • Luegmayr E (1994) Pollenmorphologische und pollenontogenetische Untersuchungen an ausgewählten Gesneriaceae. PhD thesis, Universität Wien, Vienna, Austria

    Google Scholar 

  • McConnaughey T (1989) Biomineralization mechanisms. In: Crick RE (ed) Origin, evolution, and modern aspects of biomineralization in plants and animals. Plenum, New York, pp 57–73

    Google Scholar 

  • Mann S (1986) Biomineralization in lower plants and animals — chemical perspectives. In: Leadbeater BSC, Riding R (eds) Biomineralization in lower plants and animals. Clarendon Press, Oxford, pp 39–54 (Systematics Association special volume 30)

    Google Scholar 

  • Mayer C, Schmid AM (1995) Morphology, cell-cycle and growth rates ofOdontella regia. Diatom Res 10: 299–320

    Google Scholar 

  • Müller O (1906) Pleomorphismus, Auxosporen und Dauersporen bei Melosira-Arten. Jahrb Wiss Bot 43: 49–88

    Google Scholar 

  • Muñoz CA, Webster BD, Jernstedt JA (1995) Spatial congruence between exine pattern, microtubules and endomembranes inVigna pollen. Sex Plant Reprod 8: 147–151

    Google Scholar 

  • Obermeyer G, Bentrup FW (1996) Developmental physiology: regulation of polar cell growth and morphogenesis. Prog Bot 57: 54–67

    Google Scholar 

  • —, Blatt MR (1995) Electrical properties of intact pollen grains ofLilium longiflorum: characteristics of the non-germinating pollen grain. J Exp Bot 46: 803–813

    Google Scholar 

  • Oey JL, Schnepf E (1970) Über die Auslösung der Valvenbildung bei der DiatomeeCyclotella cryptica. Versuche mit Colchicin, Actinomycin-D, und Fluodesoxyuridin (FUDR). Arch Microbiol 17: 199–213

    Google Scholar 

  • Otto F (1982) Natürliche Konstruktionen. Deutsche Verlagsanstalt, Stuttgart

    Google Scholar 

  • Owens SJ, Sheldon, JM, Dickinson HG (1990) The microtubular cytoskeleton during pollen development. Plant Syst Evol Suppl 5: 31–37

    Google Scholar 

  • Pacini E (1990) Harmomegathic characters of pteridophyta spores and spermatophyta pollen. Plant Syst Evol Suppl 5: 1–12

    Google Scholar 

  • Pérez-Muñoz CA, Jernstedt JA, Webster BD (1993a) Pollen wall development inVigna vexillata I. Characterization of wall layers. Am J Bot 80: 1183–1192

    Google Scholar 

  • — — — (1993b) Pollen wall development inVigna vexillata II. Ultrastructural studies. Am J Bot 80: 1193–1202

    Google Scholar 

  • Pickett-Heaps JD (1991) Post-mitotic cellular reorganisation in the diatomCymatopleura solea: the role of microtubules and the microtubule centre. Cell Motil Cytoskeleton 18: 279–292

    Google Scholar 

  • — (1996) Cell division in the centric diatomsOdontella (cf.mobiliensis) & O. sinensis. In: Pickett-Heaps JD, Pickett-Heaps J (eds) Diatoms: Cell division, motility and sexual reproduction. Video-disc. Cytographics Production, Sinauer, Sunderland, MA (in press)

    Google Scholar 

  • —, Tippit DH, Andreozzi JA (1979) Cell division in the pennate diatomPinnularia. IV. Valve morphogenesis. Biol Cell 35: 199–206

    Google Scholar 

  • —, Wetherbee R, Hill DRA (1988) Cell division and morphogenesis of the labiate process in the centric diatomDitylum brightwellii. Protoplasma 143: 139–149

    Google Scholar 

  • —, Schmid AM, Edgar L (1990) The cell biology of diatom valve formation. Prog Phycol Res 7: 1–168

    Google Scholar 

  • Porter EK, Parry D, Dickinson HG (1983) Changes in poly(A)+ RNA during male meiosis inLilium. J Cell Sci 62: 177–186

    PubMed  Google Scholar 

  • Preisig HR (1994) Siliceous structures and silicification in flagellated protists. Protoplasma 181: 29–42

    Google Scholar 

  • —, Anderson OR, Corliss JO, Moestrup O, Powell MJ, Roberson RW, Wetherbee R (1994) Terminology and nomenclature of protist cell surface structures. Protoplasma 181: 1–28

    Google Scholar 

  • Punt W, Blackmore S, Nilsson S, LeThomas A (1994) Glossary of pollen and spore terminology. LPP Foundation, Utrecht (LPP contributions series, vol 1)

    Google Scholar 

  • Reuzeau C, Pont-Lezica RF (1995) Comparing plant and animal extracellular matrix cytoskeleton connections — are they alike? Protoplasma 186: 113–121

    Google Scholar 

  • Roberts K (1990) Structures at the plant cell surface. Curr Opin Cell Biol 2: 920–928

    PubMed  Google Scholar 

  • — (1994) The plant extracellular matrix: in a new expansive mood. Curr Opin Cell Biol 6: 688–694

    PubMed  Google Scholar 

  • Robinson DG, Depta H (1988) Coated vesicles. Annu Rev Plant Physiol Plant Mol Biol 39: 53–99

    Google Scholar 

  • —, Hillmer S (1990) Endocytosis in plants. Physiol Plant 79: 96–104

    Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Rowley JR, Dahl AO (1977) Pollen development inArtemisia vulgaris with special reference to glycocalyx material. Pollen Spores 19: 169–284

    Google Scholar 

  • —, Skvarla JJ (1975) The glycocalyx and initiation of exine spinules on microspores ofCanna. Am J Bot 62: 479–485

    Google Scholar 

  • Russel SD (1979) Fine structure of megagametophyte development inZea mays. Can J Bot 57: 1093–1110

    Google Scholar 

  • Schindler M (1993) Das neue Bild der Zellwand. Biologie Unserer Zeit 23: 113–120

    Google Scholar 

  • Schmid AM (1979) Influence of environmental factors on the development of the valve of diatoms. Protoplasma 99: 99–115

    Google Scholar 

  • Schmid AM (1980) Valve morphogenesis in diatoms: a pattern-related filamentous system in pennates and the effect of APM, colchicine and osmotic pressure. Nova Hedwigia 33: 811–847

    Google Scholar 

  • - (1984a) Wall morphogenesis inThalassiosira eccentrica: comparison of auxospore formation and the effect of MT-inhibitors. In: Mann DG (ed) Proceedings of the 7th International Symposium on Diatoms, Philadelphia, PA, 1982, pp 47–70

  • - (1984b) Tricornate spines inThalassiosira eccentrica as a result of valve modelling. In: Mann DG (ed) Proceedings of the 7th International Symposium on Diatoms, Philadelphia, PA, 1982, pp 71–95

  • — (1984c) Valve morphogenesis in diatoms. In: Bach K, Burckhardt B (eds) Diatoms I. Shells in nature and technics. Cramer, Stuttgart, pp 300–317 (Communications of the Institute of Lightweight Structures, vol 28)

    Google Scholar 

  • - (1986a) Organization and function of cell-structures in diatoms and their morphogenesis. In: Ricard M (eded) Proceedings of the 8th International Symposium on Diatoms, Paris, 1984, pp 271–292

  • - (1986b) Wall morphogenesis inCoscinodiscus wailesii. II. Cytoplasmic events of valve morphogenesis. In: Ricard M (ed) Proceedings of the 8th International Symposium on Diatoms, Paris, 1984, pp 293–314

  • — (1987a) Wall morphogenesis in centric diatoms. In: Wiessner W, Robinson D, Starr RC (eds) Algal development: molecular and cellular aspects. Springer, Berlin Heidelberg New York Tokyo, pp 34–41

    Google Scholar 

  • — (1987b) Morphogenetic forces in diatom wall formation. In: Bereiter-Hahn J, Anderson OR, Reif WE (eds) Cytomechanics: the mechanical basis of cell form and structure. Springer, Berlin Heidelberg New York Tokyo, pp 183–199

    Google Scholar 

  • — (1988) The special Golgi-ER-mitochondrium unit in the diatom genusCoscinodiscus. Plant Syst Evol 158: 211–223

    Google Scholar 

  • — (1994a) Aspects of morphogenesis and function of diatom cell walls with implications for taxonomy. Protoplasma 181: 43–60

    Google Scholar 

  • — (1994b) Slit scales in the auxospore scale case ofCoscinodiscus granii: the rudiments of rimoportulae? Diatom Res 9: 371–375

    Google Scholar 

  • - (1994c) Sexual reproduction inCoscinodiscus granii Gough in culture. In: Marino D (ed) Proceedings of the 13th International Symposium on Diatoms, Italy, 1994, pp 139–159

  • —, Schulz D (1979) Wall morphogenesis in diatoms: deposition of silica by cytoplasmic vesicles. Protoplasma 100: 267–288

    Google Scholar 

  • —, Volcani BE (1983) Wall morphogenesis ofCoscinodiscus wailesii (Gran) Angst. I. Valve morphology and development of its architecture. J Phycol 19: 387–402

    Google Scholar 

  • —, Borowitzka MA, Volcani BE (1981) Morphogenesis and biochemistry of diatom cell walls. In: Kiermayer O (ed) Cytomorphogenesis in plants. Springer, Wien New York, pp 63–97 [Alfert M et al (eds) Cell biology monographs, vol 8]

    Google Scholar 

  • Schnepf E (1984) The cytological viewpoint of functional compartmentation. In: Wiessner W, Robinson DG, Starr RC (eds) Compartments in algal cells and their interaction. Springer, Berlin Heidelberg New York Tokyo, pp 1–10

    Google Scholar 

  • —, Deichgräber G (1969) Über die Feinstruktur vonSynura petersenii unter besonderer Berücksichtigung der Morphogenese ihrer Kieselschuppen. Protoplasma 68: 85–106

    Google Scholar 

  • —, Drebes G (1980) Morphogenetic process inAttheya decora (Bacillariophyceae, Biddulphiinae). Plant Syst Evol 135: 265–277

    Google Scholar 

  • Scott RJ (1994) Pollen exine — the sporopollenin enigma and the physics of pattern. In: Scott RJ, Stead AD (eds) Molecular and cellular aspects of plant reproduction. Cambridge University Press, Cambridge, pp 49–82

    Google Scholar 

  • Sheldon JM, Dickinson, HG (1983) Determination of patterning in the pollen wall ofLilium henryi. J Cell Sci 63: 191–208

    PubMed  Google Scholar 

  • —, (1986) Pollen wall formation inLilium: the effect of chaotropic agents, and the organization of the microtubluar cytoskeleton during pattern development. Planta 186: 11–23

    Google Scholar 

  • Shivanna KR, Johri BM (1985) The angiosperm pollen: structure and function. Wiley Eastern, New Delhi

    Google Scholar 

  • Simkiss K (1986) The process of biomineralization in lower plants and animals — an overview. In: Leadbeater BSC, Riding R (eds) Biomineralization in lower plants and animals. Clarendon Press, Oxford, pp 19–37 (Systematics Association special volume 30)

    Google Scholar 

  • Skvarla JJ, Rowley JR (1987) Ontogeny of pollen inPoinciana (Leguminosae). I. Development of exine template. Rev Palaeobot Palynol 50: 293–311

    Google Scholar 

  • Southworth D, Jernstedt JA (1995) Pollen exine development precedes microtubule rearrangement inVigna unguiculata (Fabaceae): a model for pollen wall patterning. Protoplasma 187: 79–87

    Google Scholar 

  • Steucek GL, Schmid AM (1989) Leight weight architecture of the diatomThalassiosira. In: Reiner R, Wirth H (eds) Contributions to the 1st International Symposium “Natürliche Konstruktionen: Leichtbau in Architektur und Natur”, SFB 230, Stuttgart, 1988, pp 195–203

  • Stosch HA von (1982) On auxospore envelopes in diatoms. Bacillaria 5: 127–156

    Google Scholar 

  • —, Theil G, Kowallik K (1973) Entwicklungsgeschichtliche Untersuchungen an Diatomeen. V. Bau und Lebenszyklus vonChatoceros didymum, mit Beobachtungen über einige andere Arten der Gattung. Helgol Wiss Meeresunters 25: 384–445

    Google Scholar 

  • Takahashi M (1989a) Development of the echinate pollen wall inFarfugium japonicum (Compositae: Senecioneae). Bot Mag Tokyo 102: 219–234

    Google Scholar 

  • — (1989b) Pattern determination of the exine inCaesalpinia japonica (Leguminosae: Caesalpinioideae). Am J Bot 76: 1615–1626

    Google Scholar 

  • — (1992) Development of spinous exine inNuphar japonicum DeCandolle (Nymphaeaceae). Rev Palaeobot Palynol 75: 317–322

    Google Scholar 

  • — (1993) Exine initiation and substructure in pollen ofCaesalpinia japonica (Leguminosae: Caesalpinioideae). Am J Bot 80: 192–197

    Google Scholar 

  • — (1995a) Exine development inAucuba japonica Thunberg (Cornaceae). Rev Palaeobot Palynol 85: 199–205

    Google Scholar 

  • — (1995b) Three-dimensional aspects of exine initiation and development inLilium longiflorum (Liliaceae). Am J Bot 82: 847–854

    Google Scholar 

  • — (1995c) Development of structure-less pollen wall inCeratophyllum demersum L. (Ceratophyllaceae). J Plant Res 108: 205–208

    Google Scholar 

  • —, Kouchi J (1988) Ontogenetic development of spinous exine inHibiscus syriacus (Malvaceae). Am J Bot 75: 1549–1558

    Google Scholar 

  • —, Skvarla JJ (1991a) Exine pattern formation by plasma membrane inBougainvillea spectabilis Willd. (Nyctaginaceae). Am J Bot 78: 1063–1069

    Google Scholar 

  • — (1991b) Development of striate exine inIpomopsis rubura (Polemoniaceae). Am J Bot 78: 1724–1731

    Google Scholar 

  • Tiwari SC (1989) Cytoskeleton during pollen development inTradescantia virginiana: a study employing chemical fixation, freeze-substitution, immunofluorescence, and colchicine administration. Can J Bot 67: 1244–1253

    Google Scholar 

  • —, Gunning BES (1986) Colchicine inhibits plasmodium formation and disrupts pathways of sporopollenin secretion in the anther tapetum ofTradescantia virginiana L. Protoplasma 133: 115–128

    Google Scholar 

  • Traas JA (1990) The plasmamembrane associated cytoskeleton. In: Larson C, Moller IM (eds) The plant plasma membrane. Springer, Berlin Heidelberg New York Tokyo, pp 269–292

    Google Scholar 

  • Traverse A (1988) Paleopalynology. Unwin Hyman, Boston

    Google Scholar 

  • Ubera Jimenez JL, Hidalgo Fernandez P, Schlag MG, Hesse M (1996) Pollen and tapetum development in male fertileRosmarinus officinalis L. (Lamiaceae). Grana 34: 305–316

    Google Scholar 

  • Uehara K, Kurita S (1991) Ultrastructural study on spore wall morphogenesis inLycopodium clavatum (Lycopodiaceae). Am J Bot 78: 24–36

    Google Scholar 

  • Uffelen GA van (1991) The control of spore wall formation. In: Blackmore S, Barnes SH (eds) Pollen and spores: patterns of diversification. Clarendon Press, Oxford, pp 89–102 (The Systematics Association special volume 44)

    Google Scholar 

  • Wang C-S, Walling LL, Gu YQ, Ware CF. Lord EM (1994) Two classes of proteins and mRNAs inLilium longiflorum L. identified by human vitronectin probes. Plant Physiol. 104: 711–717

    PubMed  Google Scholar 

  • Waterkeyn L. Bienfait A (1987) Localisation et rôle des β-1,3-glucanes (callose et chrysolaminarine) dans le genrePinnularia (diatomées). Cellule 74: 199–226

    Google Scholar 

  • Werner D (1977) Introduction with a note on taxonomy. In: Werner D (ed) The biology of diatoms. Bot Monogr 13: 1–17

  • Wordemann L (1992) The cytoskeleton in diatoms. The mitotic spindle and the cell cycle dependent organization In: Menzel D (ed) The cytoskeleton of the algae. CRC Press, Boca Raton, pp 39–57

    Google Scholar 

  • Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microspore callose wall causes male sterility in transgenic tobacco. Plant Cell 4: 759–771

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, A.M.M., Eberwein, R.K. & Hesse, M. Pattern morphogenesis in cell walls of diatoms and pollen grains: a comparison. Protoplasma 193, 144–173 (1996). https://doi.org/10.1007/BF01276642

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01276642

Keywords

Navigation