Skip to main content
Log in

Membrane-type eigenmotions of Mindlin plates

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A membrane analogy is presented for eigenvalue problems of simply supported Mindlin plates of arbitrary polygonal planform. Influence of hydrostatic inplane forces and Pasternak-type foundation of the plate domain is taken into account. Analytical results are derived in a non-dimensional form, which — using the analogous membrane eigenvalues as parameters — is independent of the special shape of the plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mindlin, R. D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. ASME. J. Appl. Mech.18, 31–38 (1951).

    Article  MATH  Google Scholar 

  2. Kollbrunner, C. F., Herrmann, G.: Einfluß des Schubes auf die Stabilität der Platten im elastischen Bereich. (Mittlgn. der T.K.V.S.B., H. 14.) Zürich: Verlag V.S.B. 1956.

    Google Scholar 

  3. Herrmann, G., Armenakas, A. E.: Vibrations and stability of plates under initial stress. Proc. American Soc. Civ. Eng., J. of the Eng. Mech. Div.86, 65–94 (1960).

    Google Scholar 

  4. Brunelle, E. J., Robertson, S. R.: Initially stressed Mindlin plates. AIAA J.12, 1036–1045 (1974).

    Article  MATH  Google Scholar 

  5. Pasternak, P. L.: Fundamentals of a new method of analyzing structures on elastic foundation by means of two foundation moduli. Moskva-Leningrad: 1954 (In Russian.)

  6. Kerr, A. D.: Elastic and viscoelastic foundation models. J. Appl. Mech.31, 491–498 (1964).

    Article  MATH  Google Scholar 

  7. Timoshenko, S., Woinowsky-Krieger, S.: Theory of plates and shells, 2nd ed. New York: McGraw-Hill 1959.

    MATH  Google Scholar 

  8. Federhofer, K.: Biegungsschwingungen der in ihrer Mittelebene belasteten Kreisplatte. Ing.-Archiv6, 68–74 (1935).

    Article  MATH  Google Scholar 

  9. Mindlin, R. D., Schacknow, A., Deresiewicz, H.: Flexural vibrations of rectangular plates. ASME, J. Appl. Mech.23, 430–436 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  10. Schaefer, H., Havers, A.: Die Eigenschwingungen der in ihrer Ebene gleichmäßig belasteten gleichseitigen Dreiecksplatte. Ing.-Archiv7, 83–87 (1936).

    Article  MATH  Google Scholar 

  11. Lurie, H.: Lateral vibrations as related to structural stability. ASME J. Appl. Mech.19, 195–204 (1952).

    Article  MATH  Google Scholar 

  12. Conway, H. D.: Analogies between the buckling and vibration of polygonal plates and membranes. Can. Aeron. J.6, 263 (1960).

    Google Scholar 

  13. Magrab, E. B.: Vibrations of elastic structural members. Alphen aan den Rijn: Sijthoff & Noordhoff 1979.

    MATH  Google Scholar 

  14. Kanaka Raju, K., Hinton, E.: Natural frequencies and modes of rhombic Mindlin plates. Earthquake Eng. and Struct. Dynamics8, 55–62 (1980).

    Article  Google Scholar 

  15. Pao, Y.-H., Kaul, R. K.: Waves and vibrations in isotropic and anisotropic plates. In: R. D. Mindlin and applied mechanics (Hermann, G., ed.). New York: Pergamon Press 1974.

    Google Scholar 

  16. Vlasow, V. Z., Leont'ev, U. N.: Beams, plates and shells on elastic foundations. Israel Progr. for Sci. Transl., Jerusalem 1966.

    Google Scholar 

  17. Leissa, A. W.: Vibrations of plates. NASA-SP-160, Washington 1969.

  18. Bolotin, V. V.: The dynamic stability of elastic systems. New York: Holden-Day 1964.

    MATH  Google Scholar 

  19. Marcus, M.: Die Theorie elastischer Gewebe und ihre Anwendung auf die Berechnung biegsamer Platten. Berlin: Springer 1924.

    Book  MATH  Google Scholar 

  20. Marguerre, K., Woernle, H. T.: Elastische Platten. B. I. Wissenschafts-Verlag 1975.

  21. Hagedorn, P., Koval, L. R.: On the parametric stability of a Timoshenko beam subjected to a periodic axial load. Ing.-Archiv40, 211–220 (1971).

    Article  MATH  Google Scholar 

  22. Wang, T. M., Stephens, J. E.: Natural frequencies of Timoshenko beams on Pasternak foundations. J. Sound Vibration51, 149–155 (1977).

    Article  MATH  Google Scholar 

  23. Abbas, B. A. H., Thomas, J.: The second frequency spectrum of Timoshenko beams. J. Sound Vibr.51, 123–137 (1977).

    Article  Google Scholar 

  24. Sun, C. T.: On the equations for a Timoshenko beam under initial stress. J. Appl. Mech.39, 283–285 (1972).

    Article  Google Scholar 

  25. Brunelle, E. J.: Stability and vibrations of transversely isotropic beams under initial stress. J. Appl. Mech.39, 819–821 (1972).

    Article  MATH  Google Scholar 

  26. Elwitz, E.: Die Lehre von der Knickfestigkeit. Hannover: 1918.

  27. Ratzersdorfer, J.: Die Knickfestigkeit von Stäben und Stabwerken. Wien: Springer 1936.

    Book  MATH  Google Scholar 

  28. Engesser, F.: Die Zusatzkräfte und Nebenspannungen eiserner Fachwerkbrücken. berlin 1892.

  29. Reissner, E.: A note on imperfection sensitivity of thin plates on a non-linear elastic foundation. In: Instability of continuous systems (IUTAM Symp. Herrenalb 1969), (Leipholz, H., ed.), pp. 15–18. Berlin-Heidelberg-New York: Springer 1971.

    Chapter  Google Scholar 

  30. Morse, P. M., Feshbach, H.: Methods of theoretical physics. New York: McGraw-Hill 1953.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irschik, H. Membrane-type eigenmotions of Mindlin plates. Acta Mechanica 55, 1–20 (1985). https://doi.org/10.1007/BF01267975

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01267975

Keywords

Navigation