Skip to main content
Log in

SOLVING THE PROBLEM OF ELECTRO-MAGNETO-ELASTIC BENDING OF A MULTIPLY CONNECTED PLATE

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The problem of bending of a plate with arbitrary holes and cracks is solved with the use of complex potentials of the theory of bending of thin electro-magneto-elastic plates. Moreover, with the help of conformal mappings, expansion of holomorphic functions into the Laurent series or Faber polynomials owing to satisfaction of boundary conditions by the generalized least squares method, the problem is reduced to an overdetermined system of linear algebraic equations, which is then solved by the method of singular value decomposition. Results of numerical investigations for a plate with two elliptical holes or cracks and for a plate with a hole and a crack (including an edge crack) are reported. The influence of physical and mechanical properties of the plate material and geometric characteristics of holes and cracks on the basic characteristics of the electro-magneto-elastic state is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. D. Berlincourt, D. R. Curran, and H. Jaffe, “Piezoelectric and Piezomagnetic Materials and Their Function in Transducers," in Physical Acoustics, Ed. by W. P. Mason (Academic Press, New York, 1964).

  2. M. I. Bichurin, V. M. Petrov, D. A. Filippov, et al., Magnetoelectric Composites (Akad. Estestv., Moscow, 2006; Jenny Stanford Publishing, 2019).

    Google Scholar 

  3. A. P. Pyatakov, “Magnetoelectric Materials and Their Application in Practice," Bul. Ros. Magnit. Obshchestva 5 (2), 1-3 (2006).

  4. S. Srinivas and Y. L. Jiang, “The Effective Magnetoelectric Coefficients of Polycrystalline Multiferroic Composites," Acta Materialia 53, 4135–4142 (2005).

    Article  ADS  Google Scholar 

  5. A. C. Eringen, “Theory of Electromagnetic Elastic Plates," Intern. J. Engng Sci. 27 (4), 363–375 (1989).

    Article  MathSciNet  Google Scholar 

  6. L. Librescu, D. Hasanyan, and D. R. Ambur, “Electromagnetically Conducting Elastic Plates in a Magnetic Field: Modeling and Dynamic Implications," Intern. J. Non-Linear Mech. 39 (5), 723–739 (2004).

  7. C. Gales and N. Baroiu, “On the Bending of Plates in the Electromagnetic Theory of Microstretch Elasticity," Z. angew. Math. Mech. Bd 94 (1/2), 55–71 (2014).

    Article  MathSciNet  Google Scholar 

  8. S. A. Kaloerov and A. V. Petrenko, “Two-Dimensional Problem of Electro-Magneto-Elasticity for Multiply Connected Media," Mat. Metody I Fiz.-Mekh. Polya 51 (2), 208-221 (2008).

  9. S. A. Kaloerov, “Complex Potentials of the Theory of Bending of Thin Electro-Magneto-Elastic Plates," Vestn. Don. Nats. Univ., Ser. A, Estestv. Nauki, No. ?, 37-57 (2019).

  10. S. A. Kaloerov and A. V. Seroshtanov, “Bending of Thin Electromagnetoelastic Plates," Prikl. Mekh. Tekh. Fiz. 63 (2), 151-165 (2022) [J. Appl. Mech. Tech. Phys. 63 (2), 308-320 (2022)].

    Article  ADS  MathSciNet  Google Scholar 

  11. V. V. Voevodin, Computational Basis of Linear Algebra (Nauka, Moscow, 1977).

    Google Scholar 

  12. J. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice-Hall, 1977).

    MATH  Google Scholar 

  13. Z. Drmaç and K. Veseliç, “New Fast and Accurate Jacobi SVD Algorithm. 1." SIAM J. Matrix Anal. Appl. 29 (4), 1322–1342 (2008).

    Article  MathSciNet  Google Scholar 

  14. Z. Drmaç and K. Veseliç, “New Fast and Accurate Jacobi SVD Algorithm. 2," SIAM J. Matrix Anal. Appl. 29 (4), 1343–1362 (2008).

    Article  MathSciNet  Google Scholar 

  15. S. A. Kaloerov and A. I. Zanko, “Solution of the Problem of Linear Viscoelasticity for Multiply Connected Isotropic Plates," Prikl. Mekh. Tekh. Fiz. 58 (2), 141–151 (2017).

    Article  Google Scholar 

  16. Y. Yamamoto, “Electromagnetomechanical Interactions in Deformable Solids and Structures," Eds. by Y. Yamamoto, K. Miya. (Amsterdam: Elsevier Sci. North Holland, 1987).

  17. W.-Y. Tian and U. Gabbert, “Multiple Crack Interaction Problem in Magnetoelectroelastic Solids," Europ. J. Mech. Pt A 23, 599–614 (2004).

    Article  MATH  Google Scholar 

  18. P. F. Hou, G.-H. Teng, and H.-R. Chen, “Three-Dimensional Greens Function for a Point Heat Source in Two-Phase Transversely Isotropic Magneto-Electro-Thermo-Elastic Material," Mech. Materials 41, 329–338 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kaloerov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 63, No. 4, pp. 143-155. https://doi.org/10.15372/PMTF20220415.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaloerov, S.A., Seroshtanov, A.V. SOLVING THE PROBLEM OF ELECTRO-MAGNETO-ELASTIC BENDING OF A MULTIPLY CONNECTED PLATE. J Appl Mech Tech Phy 63, 676–687 (2022). https://doi.org/10.1134/S0021894422040150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422040150

Keywords

Navigation