Skip to main content
Log in

Intra-well and cross-well chaos in membranes and shells liable to buckling

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This work presents the mathematical modeling for the nonlinear vibration analysis of membrane and shell structures of arbitrary shape. These structures are usually the optimal form in many engineering applications. However, they may buckle under specific loading conditions and, in most cases, are sensitive to geometric imperfections. These structures when liable to unstable buckling present for load levels lower than the static critical load a multiwell potential functions, which has an underlying influence on the nonlinear dynamic behavior and stability of the structure in a dynamic environment. The energy barrier of each well is a key factor, and depending on the force control parameters and initial conditions, intra-well and cross-well motions may occur. Also coexisting attractors are the norm, influencing the structure's dynamic integrity. In these structures, escape from a potential well is preceded by global and local bifurcations, usually leading to chaos, which influence the number of coexisting attractor, their period and the topology of the basins of attraction. In the present work, three problems are addressed: an axially loaded cylindrical shell, a pressure-loaded spherical cap and a spherical membrane under internal pressure. These problems illustrate the possible multiwell functions observed in several membrane and shell problems, namely potential functions with one, two and three (symmetric or asymmetric) potential wells. A detailed parametric analysis is conducted through bifurcation diagrams of the Poincaré map, time responses and Floquet stability criterion to clarify the influence of the multiwell potential function on the bifurcation scenario, basins of attraction and system safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Brush, D.O., Almroth, B.O.: Buckling of Bars. Plates and Shells. McGraw-Hill, New York (1975)

    Book  Google Scholar 

  2. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  3. Jenkins, C. H.: Gossamer spacecraft: membrane and inflatable structures technology for space applications. In: AIAA (2001)

  4. Shell Buckling (2019). https://shellbuckling.com/index.php. Accessed in 12 Nov 2019

  5. Ramm, E., Wall, W.A.: Shell structures—a sensitive interrelation between physics and numerics. Int. J. Numer. Methods Eng. 60(1), 381–427 (2004). https://doi.org/10.1002/nme.967

    Article  MathSciNet  MATH  Google Scholar 

  6. Batista, R.C., Gonçalves, P.B.: Nonlinear lower bounds for shell buckling design. J. Construct. Steel Res. 28(2), 101–120 (1994). https://doi.org/10.1016/0143-974X(94)90037-X

    Article  Google Scholar 

  7. Wagner, H.N.R., Sosa, E.M., Ludwig, T., Croll, J.G.A., Hühne, C.: Robust design of imperfection sensitive thin-walled shells under axial compression, bending or external pressure. Int. J. Mech. Sci. 156, 205–220 (2019). https://doi.org/10.1016/j.ijmecsci.2019.02.047

    Article  Google Scholar 

  8. Hutchinson, J.W., Thompson, J.M.T.: Imperfections and energy barriers in shell buckling. Int. J. of Solids Struct. 148, 157–168 (2018). https://doi.org/10.1016/j.ijsolstr.2018.01.030

    Article  Google Scholar 

  9. Thompson, J.M.T.: Advances in shell buckling: theory and experiments. Int. J. Bifurc. Chaos (2015). https://doi.org/10.1142/S0218127415300013

    Article  Google Scholar 

  10. Morais, J.L., Silva, F.M.A.: Influence of modal coupling and geometrical imperfections on the nonlinear buckling of cylindrical panels under static axial load. Eng. Struct. 183, 816–829 (2019). https://doi.org/10.1016/j.engstruct.2018.12.032

    Article  Google Scholar 

  11. Yamada, S., Croll, J.G.: Buckling behavior of pressure loaded cylindrical panels. J. Eng. Mech. 115(2), 327–344 (1989)

    Article  Google Scholar 

  12. Gonçalves, P.B., Croll, J.G.: Axisymmetric buckling of pressure-loaded spherical caps. J. Struct. Eng. 118(4), 970–985 (1992)

    Article  Google Scholar 

  13. Thompson, J.M.T., VanderHeijden, G.H.M.: Quantified “shock-sensitivity” above the Maxwell load. Int. J. Bifurc. Chaos 24, 3 (2014). https://doi.org/10.1142/s0218127414300092

    Article  Google Scholar 

  14. Pamplona, D.C., Goncalves, P.B., Lopes, S.R.X.: Finite deformations of cylindrical membrane under internal pressure. Int. J. Mech. Sci. 48(6), 683–696 (2006). https://doi.org/10.1016/j.ijmecsci.2005.12.007

    Article  Google Scholar 

  15. Patil, A., Nordmark, A., Eriksson, A.: Free and constrained inflation of a pre-stretched cylindrical membrane. Proc. R. Soc. A Math. Phys. Eng. Sci. (2014). https://doi.org/10.1098/rspa.2014.0282

    Article  Google Scholar 

  16. Patil, A., Nordmark, A., Eriksson, A.: Instability investigation on fluid-loaded pre-stretched cylindrical membranes. Proc. R. Soc. A Math. Phys. Eng. Sci. (2015). https://doi.org/10.1098/rspa.2015.0016

    Article  Google Scholar 

  17. Soares, R.M., Amaral, P.F., Silva, F.M., Gonçalves, P.B.: Nonlinear breathing motions and instabilities of a pressure-loaded spherical hyperelastic membrane. Nonlinear Dyn. (2019). https://doi.org/10.1007/s11071-019-04855-4

    Article  MATH  Google Scholar 

  18. Gonçalves, P.B., Pamplona, D., Lopes, S.R.X.: Finite deformations of an initially stressed cylindrical shell under internal pressure. Int. J. Mech. Sci. 50(1), 92–103 (2008). https://doi.org/10.1016/j.ijmecsci.2007.05.001

    Article  MATH  Google Scholar 

  19. Horný, L., Netušil, M., Horák, Z.: Limit point instability in pressurization of anisotropic finitely extensible hyperelastic thin-walled tube. Int. J. Nonlinear Mech. 77, 107–114 (2015). https://doi.org/10.1016/j.ijnonlinmec.2015.08.003

    Article  Google Scholar 

  20. Anani, Y., Rahimi, G.: On the stability of internally pressurized thick-walled spherical and cylindrical shells made of functionally graded incompressible hyperelastic material. Lat. Am. J. Solids Struct. (2018). https://doi.org/10.1590/1679-78254322

    Article  Google Scholar 

  21. Kebadze, E., Guest, S.D., Pellegrino, S.: Bistable prestressed shell structures. Int. J. Solids Struct. 41(11–12), 2801–2820 (2004). https://doi.org/10.1016/j.ijsolstr.2004.01.028

    Article  MATH  Google Scholar 

  22. Dai, F., Li, H., Du, S.: Design and analysis of a tri-stable structure based on bi-stable laminates. Compos. A Appl. Sci. Manuf. 43(9), 1497–1504 (2012). https://doi.org/10.1016/j.compositesa.2012.03.018

    Article  Google Scholar 

  23. Overvelde, J.T., Kloek, T., D’haen, J.J., Bertoldi, K.: Amplifying the response of soft actuators by harnessing snap-through instabilities. Proc. Natl. Acad. Sci. 112(35), 10863–10868 (2015)

    Article  Google Scholar 

  24. Lee, A., López Jiménez, F., Marthelot, J., Hutchinson, J.W., Reis, P.M.: The geometric role of precisely engineered imperfections on the critical buckling load of spherical elastic shells. J. Appl. Mech. (2016). https://doi.org/10.1115/1.4034431

    Article  Google Scholar 

  25. Thompson, J.M.T.: Chaotic phenomena triggering the escape from a potential well. Proc. R. Soc. A Math. Phys. Sci. 421(1861), 195–225 (1989). https://doi.org/10.1098/rspa.1989.0009

    Article  MathSciNet  MATH  Google Scholar 

  26. Lansbury, A.N., Thompson, J.M.T.: Incursive fractals: a robust mechanism of basin erosion preceding the optimal escape from a potential well. Phys. Lett. A 150(8–9), 355–361 (1990). https://doi.org/10.1016/0375-9601(90)90231-C

    Article  MathSciNet  Google Scholar 

  27. Stewart, H.B., Thompson, J.M.T., Ueda, Y., Lansbury, A.N.: Optimal escape from potential wells-patterns of regular and chaotic bifurcation. Physica D 85(1–2), 259–295 (1995). https://doi.org/10.1016/0167-2789(95)00172-Z

    Article  MathSciNet  MATH  Google Scholar 

  28. Thompson, J.M.T., DeSouza, J.R.: Suppression of escape by resonant modal interactions: in shell vibration and heave-roll capsize. Proc. R. Soc. A Math. Phys. Eng. Sci. 452(1954), 2527–2550 (1996). https://doi.org/10.1098/rspa.1996.0135

    Article  MATH  Google Scholar 

  29. Moon, F.C., Li, G.X.: The fractal dimension of the two-well potential strange attractor. Physica D 17(1), 99–108 (1985). https://doi.org/10.1016/0167-2789(85)90137-X

    Article  MathSciNet  MATH  Google Scholar 

  30. Moon, F.C., Li, G.X.: Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential. Phys. Rev. Lett. 55(14), 1439–1442 (1985). https://doi.org/10.1103/PhysRevLett.55.1439

    Article  MathSciNet  Google Scholar 

  31. Moon, F.C., Johnson, M.A., Holmes, W.T.: Controlling chaos in a two-well oscillator. Int. J. Bifurc. Chaos 6(02), 337–347 (1996). https://doi.org/10.1142/s0218127496000084

    Article  Google Scholar 

  32. Ueda, Y., Nakajima, H., Hikihara, T., Stewart, H.B.: Forced two-well potential Duffing’s oscillator. In: Salam, F.M.A., Levi, M.L. (eds.) Dynamical Systems Approaches to Nonlinear Problems in Systems and Circuits, pp. 128–137. SIAM, Philadelphia (1988)

    Google Scholar 

  33. Szemplinska-Stupnicka, W., Rudowski, J.: Local methods in predicting occurrence of chaos in two-well potential systems: superharmonic frequency region. J. Sound Vib. 152(1), 57–72 (1992). https://doi.org/10.1016/0022-460X(92)90065-6

    Article  MathSciNet  MATH  Google Scholar 

  34. Szemplińska-Stupnicka, W.: Cross-well chaos and escape phenomena in driven oscillators. Nonlinear Dyn. 3(3), 225–243 (1992)

    Article  MathSciNet  Google Scholar 

  35. Venkatesan, A., Lakshmanan, M.: Bifurcation and chaos in the two-well Duffing-Van der Pol oscillator: numerical and analytical studies. Phys. Rev. E 56(6), 1–15 (1997). https://doi.org/10.1103/PhysRevE.56.6321

    Article  Google Scholar 

  36. Lenci, S., Rega, G.: Controlling nonlinear dynamics in a two-well impact system I Attractors and bifurcation scenario under symmetric excitations. Int. J. Bifurc. Chaos 8(12), 2387–2407 (1998). https://doi.org/10.1142/S0218127498001911

    Article  MathSciNet  MATH  Google Scholar 

  37. Siewe, M.S., Cao, H., Sanjuán, M.A.: Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh-Duffing oscillator. Chaos Solitons Fractals 39(3), 1092–1099 (2009). https://doi.org/10.1016/j.chaos.2007.05.007

    Article  MATH  Google Scholar 

  38. Udani, J.P., Arrieta, A.F.: Efficient potential well escape for bi-stable Duffing oscillators. Nonlinear Dyn. 92(3), 1045–1059 (2018). https://doi.org/10.1007/s11071-018-4107-3

    Article  Google Scholar 

  39. Litak, G., Borowiec, M.: Oscillators with asymmetric single and double well potentials: transition to chaos revisited. Acta Mech. 184(1–4), 47–59 (2006). https://doi.org/10.1007/s00707-006-0340-9

    Article  MATH  Google Scholar 

  40. Theocharis, G., Kevrekidis, P.G., Frantzeskakis, D.J., Schmelcher, P.: Symmetry breaking in symmetric and asymmetric two-well potentials. Phys. Rev. E (2006). https://doi.org/10.1103/physreve.74.056608

    Article  Google Scholar 

  41. Li, G.X., Moon, F.C.: Criteria for chaos of a three-well potential oscillator with homoclinic and heteroclinic orbits. J. Sound Vib. 136(1), 17–34 (1990). https://doi.org/10.1016/0022-460x(90)90934-r

    Article  MathSciNet  MATH  Google Scholar 

  42. Jing, Z., Huang, J., Deng, J.: Complex dynamics in three-well Duffing system with two external forcings. Chaos Solitons Fractals 33(3), 795–812 (2007). https://doi.org/10.1016/j.chaos.2006.03.071

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, X., Xu, W., Sun, Z., Fang, T.: Effect of bounded noise on chaotic motion of a triple-well potential system. Chaos Solitons Fractals 25(2), 415–424 (2005). https://doi.org/10.1016/j.chaos.2004.12.005

    Article  MATH  Google Scholar 

  44. Siewe, M.S., Cao, H., Sanjuán, M.A.: On the occurrence of chaos in a parametrically driven extended Rayleigh oscillator with three-well potential. Chaos Solitons Fractals 41(2), 772–782 (2009). https://doi.org/10.1016/j.chaos.2008.03.013

    Article  MATH  Google Scholar 

  45. Arathi, S., Rajasekar, S.: Impact of the depth of the wells and multifractal analysis on stochastic resonance in a triple-well system. Physica Scr. (2011). https://doi.org/10.1088/0031-8949/84/06/065011

    Article  Google Scholar 

  46. Kubenko, V.D., Koval’chuk, P.S.: Nonlinear problems of the vibration of thin shells (review). Int. Appl. Mech. 34, 703–728 (1998)

    Article  Google Scholar 

  47. Amabili, M., Païdoussis, M.P.: Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid-structure interaction. Appl. Mech. Rev. 56(4), 349–381 (2003). https://doi.org/10.1115/1.1565084

    Article  Google Scholar 

  48. Moussaoui, F., Benamar, R.: Nonlinear vibrations of shell-type structures: a review with bibliography. J. Sound Vib. 255(1), 161–184 (2002)

    Article  Google Scholar 

  49. Alijani, F., Amabili, M.: Nonlinear vibrations of shells: a literature review from 2003 to 2013. Int. J. Nonlinear Mech. 58, 233–257 (2014). https://doi.org/10.1016/j.ijnonlinmec.2013.09.012

    Article  Google Scholar 

  50. Chang, S.I., Bajaj, A.K., Krousgrill, C.M.: Nonlinear vibrations and chaos in harmonically excited rectangular plates with one-to-one internal resonance. Nonlinear Dyn. 4(5), 433–460 (1993)

    Article  Google Scholar 

  51. Popov, A.A., Thompson, J.M.T., McRobie, F.A.: Chaotic energy exchange through auto-parametric resonance in cylindrical shells. J. Sound Vib. 248(3), 395–411 (2001). https://doi.org/10.1006/jsvi.2000.3794

    Article  Google Scholar 

  52. Soliman, M.S., Gonçalves, P.B.: Chaotic behavior resulting in transient and steady state instabilities of pressure-loaded shallow spherical shells. J. Sound Vib. 259(3), 497–512 (2003). https://doi.org/10.1006/jsvi.2002.5163

    Article  Google Scholar 

  53. Touzé, C., Thomas, O., Amabili, M.: Transition to chaotic vibrations for harmonically forced perfect and imperfect circular plates. Int. J. Nonlinear Mech. 46(1), 234–246 (2011). https://doi.org/10.1016/j.ijnonlinmec.2010.09.004

    Article  Google Scholar 

  54. Amabili, M.: Nonlinear vibrations of doubly curved shallow shells. Int. J. Nonlinear Mech. 40(5), 683–710 (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.08.007

    Article  MATH  Google Scholar 

  55. Krysko, A.V., Awrejcewicz, J., Kuznetsova, E.S., Krysko, V.A.: Chaotic vibrations of closed cylindrical shells in a temperature field. Int. J. Bifurc. Chaos 18(05), 1515–1529 (2008). https://doi.org/10.1142/S0218127408021130

    Article  MathSciNet  MATH  Google Scholar 

  56. Awrejcewicz, J., Krysko, V.A., Shchekaturova, T.V.: Transitions from regular to chaotic vibrations of spherical and conical axially-symmetric shells. Int. J. Struct. Stab. Dyn. 5, 359–385 (2005). https://doi.org/10.1142/S0219455405001623

    Article  MATH  Google Scholar 

  57. Pellicano, F., Barbieri, M.: Complex dynamics of circular cylindrical shells. Int. J. Nonlinear Mech. 65, 196–212 (2014). https://doi.org/10.1016/j.ijnonlinmec.2014.05.006

    Article  Google Scholar 

  58. Pellicano, F., Amabili, M.: Dynamic instability and chaos of empty and fluid-filled circular cylindrical shells under periodic axial loads. J. Sound Vib. 293(1–2), 227–252 (2006). https://doi.org/10.1016/j.jsv.2005.09.032

    Article  Google Scholar 

  59. Ogden, R.W.: Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. A Math. Phys. Sci. 326(1567), 565–584 (1972). https://doi.org/10.1098/rspa.1972.0026

    Article  MATH  Google Scholar 

  60. Gonçalves, P.B., Del Prado, Z.J.G.N.: Nonlinear oscillations and stability of parametrically excited cylindrical shells. Meccanica 37(6), 569–597 (2002). https://doi.org/10.1023/A:1020972109600

    Article  MATH  Google Scholar 

  61. Gonçalves, P.B., Del Prado, Z.J.G.N.: Effect of nonlinear modal interaction on the dynamic instability of axially excited cylindrical shells. Comput. Struct. 82(32), 2621–2634 (2004). https://doi.org/10.1016/j.compstruc.2004.04.020

    Article  Google Scholar 

  62. Gonçalves, P.B., Del Prado, Z.J.G.N.: Low-dimensional galerkin models for nonlinear vibration and instability analysis of cylindrical shells. Nonlinear Dyn. 41, 129–145 (2005). https://doi.org/10.1007/s11071-005-2802-3

    Article  MathSciNet  MATH  Google Scholar 

  63. Goncalves, P.B., Silva, F.M.A., Prado, Z.J.G.N.: Low-dimensional models for the nonlinear vibration analysis of cylindrical shells based on a perturbation procedure and proper orthogonal decomposition. J. Sound Vib. 315, 641–663 (2008). https://doi.org/10.1016/j.jsv.2008.01.063

    Article  Google Scholar 

  64. Rodrigues, L., Gonçalves, P.B., Silva, F.M.A., Prado, Z.J.G.N.: Effects of modal coupling on the dynamics of parametrically and directly excited cylindrical shells. Thin Walled Struct. 81, 210–224 (2013). https://doi.org/10.1016/j.tws.2013.08.004

    Article  Google Scholar 

  65. Silva F.M.A., Prado, Z.J.G.N., Gonçalves, P.B.: On the influence of a companion mode on the nonlinear oscillations of fluid-filled cylindrical shells. In: Proceedings of the 20th ABCM International Congress of Mechanical Engineering. ABCM, Gramado, RS, Brazil

  66. Lenci, S., Orlando, D., Rega, G., Gonçalves, P.B.: Controlling practical stability and safety of mechanical systems by exploiting chaos properties. Chaos Interdiscip. J. Nonlinear Sci. (2012). https://doi.org/10.1063/1.4746094

    Article  MATH  Google Scholar 

  67. Rega, G., Lenci, S., Ruzziconi, L.: Dynamical integrity: a novel paradigm for evaluating load carrying capacity. In: Global Nonlinear Dynamics for Engineering Design and System Safety, Springer, pp. 27–112 (2019)

  68. Gonçalves, P.B.: Axisymmetric vibrations of imperfect shallow spherical caps under pressure loading. J. Sound Vib. 174, 249–260 (1994). https://doi.org/10.1006/jsvi.1994.1274

    Article  MATH  Google Scholar 

  69. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)

    MATH  Google Scholar 

  70. Amabili, M.: Nonlinear damping in nonlinear vibrations of rectangular plates: derivation from viscoelasticity and experimental validation. J. Mech. Phys. Solids 118, 275–292 (2018). https://doi.org/10.1016/j.jmps.2018.06.004

    Article  MathSciNet  MATH  Google Scholar 

  71. Amabili, M.: Nonlinear damping in large-amplitude vibrations: modelling and experiments. Nonlinear Dyn. 93, 5–18 (2018). https://doi.org/10.1007/s11071-017-3889-z

    Article  Google Scholar 

  72. Balasubramanian, P., Ferrari, G., Amabili, M.: Identification of the viscoelastic response and nonlinear damping of a rubber plate in nonlinear vibration regime. Mech. Syst. Signal Process. 111, 376–398 (2018). https://doi.org/10.1016/j.ymssp.2018.03.061

    Article  Google Scholar 

  73. Twizell, E.H., Ogden, R.W.: Nonlinear optimization of the material constants in Ogden’s stress-deformation function for incompressible isotropic elastic materials. ANZIAM J 24(4), 424–434 (1983)

    MathSciNet  MATH  Google Scholar 

  74. Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comp. Mech. 34(6), 484–502 (2004). https://doi.org/10.1007/s00466-004-0593-y

    Article  MATH  Google Scholar 

  75. Jones, D.F., Treloar, L.R.G.: The properties of rubber in pure homogeneous strain. J. Phys. D Appl. Phys. 8, 1285–1304 (1975). https://doi.org/10.1088/0022-3727/8/11/007

    Article  Google Scholar 

  76. Treloar, L.R.G.: Stress–strain data for vulcanized rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70 (1944). https://doi.org/10.1039/tf9444000059

    Article  Google Scholar 

  77. Selvadurai, A.P.S.: Deflections of a rubber membrane. J. Mech. Phys. Solids 54(6), 1093–1119 (2006). https://doi.org/10.1016/j.jmps.2006.01.001

    Article  MATH  Google Scholar 

  78. Hsu, C.S.: Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems, vol. 64. Springer, Berlin (2013)

    Google Scholar 

  79. Sun, J.Q., Luo, A.C. (eds.): Global Analysis of Nonlinear Dynamics, vol. 2. Springer, Berlin (2012)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Brazilian research agencies, CNPq (Grant Numbers 301355/2018-5, 164925/2017-1, 303995/2017-3, 401418/2016-2), FAPERJ-CNE (Grant Number E-26/203.020/2015) and CAPES (Finance Code 001 and 88881.310620/2018-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Batista Gonçalves.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

For the cylindrical shell model, equations of motion of the reduced 2DOF model after Galerkin discretization (20) are given by [60]:

$$ T_{11} \,\ddot{\zeta }_{11} \, + \,R_{11} \,\dot{\zeta }_{11} \, + \,\left( {U_{11} \, - \,\psi_{11} } \right)\,\zeta_{11} \, + \,U_{112} \,\zeta_{11} \,\zeta_{02} \, + \,\frac{1}{6}\,U_{1111} \,\zeta_{11}^{3} \, + \,\frac{1}{2}\,U_{1122} \,\zeta_{11} \,\zeta_{02}^{2} \, = \,0 $$
$$ T_{02} \,\ddot{\zeta }_{02} \, + \,R_{22} \,\dot{\zeta }_{02} \, + \,\left( {U_{22} \, - \,\psi_{22} } \right)\,\zeta_{02} \, + \,\,\frac{1}{2}\,U_{112} \,\zeta_{11}^{2} \, + \,\frac{1}{2}\,U_{1122} \,\zeta_{11}^{2} \,\zeta_{02} \,\, = \,0 $$

where

$$ U_{11} \, = \,8\frac{{\alpha^{2} \,m^{3} }}{{\pi^{2} n\,\left( {m^{2} \, + \,\gamma^{2} } \right)^{2} }}\, + \,\frac{2}{3}\,\frac{{\pi^{2} \beta^{4} \left( {m^{2} \, + \,\gamma^{2} } \right)^{2} }}{{m\,n\,\left( {1\, - \,\nu^{2} } \right)}} $$
$$ U_{22} \, = \,16\frac{{\alpha^{2} }}{{\pi^{2} \,m\,n}}\, + \,\frac{64}{3}\,\frac{{\pi^{2} \beta^{4} \,m^{3} }}{{n\,\left( {1\, - \,\nu^{2} } \right)}} $$
$$ U_{112} \, = \, - 32\frac{{\alpha^{3} \,n\,m^{3} }}{{\pi^{2} \left( {m^{2} \, + \,\gamma^{2} } \right)^{2} }}\, - 4\,\frac{{\alpha^{3} \,n}}{{\pi^{2} \,m}} $$
$$ U_{1111} \, = \,3\frac{{\beta^{4} \,\pi^{2} \left( {m^{4} \, + \,\gamma^{4} } \right)}}{m\,n} $$
$$ U_{1122} \, = \,64\frac{{\alpha^{4} \,n^{3} m^{3} }}{{\pi^{2} }}\left[ {\frac{1}{{\,\left( {9\,m^{2} \, + \,\gamma^{2} } \right)^{2} }}\, + \,\frac{1}{{\,\left( {m^{2} \, + \,\gamma^{2} } \right)^{2} }}} \right]\, $$
$$ \psi_{11} \, = \,8\,\frac{{\varGamma \,\alpha \,\beta^{2} \,m}}{{n\,\sqrt {3\,\left( {1\, - \,\nu^{2} } \right)} }} $$
$$ \psi_{22} \, = \,64\,\frac{{\varGamma \,\alpha \,\beta^{2} \,m}}{{n\,\sqrt {3\,\left( {1\, - \,\nu^{2} } \right)} }} $$
$$ T_{11} \, = \,16\,\frac{M\,h}{{\pi^{2} \,E\,n\,m}} $$
$$ T_{22} \, = \,32\,\frac{M\,h}{{\pi^{2} \,E\,n\,m}} $$
$$ R_{11} \, = \,8\frac{{h\,C_{1} }}{{\pi^{2} {\kern 1pt} E\,m\,n\,}}\, + \,8\,\frac{{h\,C_{2} \,\pi^{2} }}{{E\,L^{4} \,m\,n}}\left( {m^{2} \, + \,\gamma^{2} } \right)^{2} $$
$$ R_{22} \, = \,16\frac{{h\,C_{1} }}{{\pi^{2} {\kern 1pt} E\,m\,n\,}}\, + \,256\,\frac{{h\,C_{2} \,\pi^{2} \,m^{3} }}{{E\,L^{4} n}}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, F.M.A., Soares, R.M., del Prado, Z.G.N. et al. Intra-well and cross-well chaos in membranes and shells liable to buckling. Nonlinear Dyn 102, 877–906 (2020). https://doi.org/10.1007/s11071-020-05661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05661-z

Keywords

Navigation