Skip to main content
Log in

Propionate metabolism in cultured human cells after overexpression of recombinant methylmalonyl CoA mutase: Implications for somatic gene therapy

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Strategies for somatic gene therapy must consider the metabolic consequences of expressing the recombinant gene product in addition to methods for gene transfer and expression. We describe studies of propionate metabolism in cultured cells transfected with methylmalonyl CoA mutase (MCM), the enzyme deficient inmut methylmalonic acidemia. Transfection of MCM intomut fibroblasts restores propionate metabolism to normal levels in a dose-dependent manner. Overexpression of MCM, or the addition of excess propionate, carnitine, or cobalamin, does not increase propionate metabolism in normal human fibroblasts, lymphoblasts, or hepatoma cells, although hepatic cells exhibit >10-fold higher levels of propionate metabolism. Significantly, the restoration of propionate metabolism inmut fibroblasts is disproportionately greater than the efficiency of transfection, suggesting the presence of a cooperative phenomenon between cells. Intercellular participation in propionate metabolism is evident in cocultures of MCM-deficient and propionyl CoA carboxylase-deficient cells. We conclude that the liver is the preferred target for gene therapy of MCM deficiency because of its greater capacity for propionate metabolism and that cooperation between cells could enhance the biological effect of a subpopulation of cells transformed with recombinant MCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Flavin, M., and S. Ochoa. (1957).J. Biol. Chem. 229965–979.

    Google Scholar 

  2. Rosenberg, L.E., and Fenton, W.A. (1989). InThe Metabolic Basis of Inherited Disease, 6th ed., (eds.) Scriver, C.R., Beaudet, A.L., Sly, W.S., and Valle, D. (McGraw-Hill, New York), pp. 822–844.

    Google Scholar 

  3. Bergman, E.N. (1990).Physiol. Rev. 70567–590.

    Google Scholar 

  4. Anderson, W.F. (1984).Science 226401–409.

    Google Scholar 

  5. Friedmann, T. (1989).Science 2441275–1281.

    Google Scholar 

  6. Ledley, F.D. (1989). InBiotechnology, A Comprehensive Treatise, Vol. 7b, (ed.) Jacobson, G.K., and Jolly, S.O. (VCH Verlagsgesellschaft, Weinheim) pp. 399–461.

    Google Scholar 

  7. Rosenberg, S.A., Aebersold, P., Cornetta, K., et al. (1990).N. Engl. J. Med. 323570–578.

    Google Scholar 

  8. Ledley, F.D. (1990).J. Inher. Metab. Dis. 13597–616.

    Google Scholar 

  9. Ledley, F.D., Lumetta, M., Nguyen, P.N., Kolhouse, J.F., and Allen, R.H. (1988).Proc. Natl. Acad. Sci. U.S.A. 853518–3521.

    Google Scholar 

  10. Jansen, R., Kalousek, F., Fenton, W.A., Rosenberg, L.E., and Ledley, F.D. (1989).Genomics 4198–205.

    Google Scholar 

  11. Wilkemeyer, M.F., Crane, A.M., and Ledley, F.D. (1990).Biochem. J. 271449–455.

    Google Scholar 

  12. Wilkemeyer, M.F., Crane, A.M., and Ledley, F.D. (1991).J. Clin. Invest. 87915–918.

    Google Scholar 

  13. Sawada, T., and Ledley, F.D. (1992).Somat. Cell Mol. Genet. 18507–516. accompanying manuscript.

    Google Scholar 

  14. Ledley, F.D., Woo, S.L., Ferry G.D. et al. (1991).Hum. Gene Ther. 2331–338.

    Google Scholar 

  15. Brass, E.P., and Ruff, L.J. (1989).J. Nutr. 1191196–1202.

    Google Scholar 

  16. Brass, E.P., Allen, R.H., Ruff, L.J., and Stabler, S.P. (1990).Biochem. J. 266809–815.

    Google Scholar 

  17. Ledley, F.D., Crane, A.M., and Lumetta, M. (1990).Am. J. Hum. Genet. 46539–547.

    Google Scholar 

  18. Darlington, G.J. (1987).Methods Enzymol. 15119–37.

    Google Scholar 

  19. MacGregor, G., and Caskey, C.T. (1989).Nucleic Acids Res. 172365.

    Google Scholar 

  20. Shigekawa, K., and Dower, W.J. (1988).BioTechniques 6742–751.

    Google Scholar 

  21. Jesse, B.W., Emery, R.S., and Thomas, J.W. (1986).J. Dairy Sci. 692290–2297.

    Google Scholar 

  22. Chen, H.M., and Lifschitz, C.H. (1989).Clin. Chem. 3574–76.

    Google Scholar 

  23. Kolhouse, J.F., Stabler, S.P., and Allen, R.H. (1988).Methods Enzymol. 166407–414.

    Google Scholar 

  24. Morrow, G., Revsin, B., Mathews, C., and Giles, H. (1976).Clin. Genet. 10218–223.

    Google Scholar 

  25. Willard, H.F., Ambani, L.M., Hart, A.C., Mahoney, M.J., and Rosenberg, L.E. (1976).Hum. Genet. 34277–288.

    Google Scholar 

  26. Byck, S., and Rosenblatt, D.S. (1991).Clin. Invest. Med. 14153–159.

    Google Scholar 

  27. Kovachy, R.J., Stabler, S.P., and Allen, R.H. (1988).Methods Enzymol. 166393–400.

    Google Scholar 

  28. Roe, C.R., Millington, D.S., Kahler, S.G., Kodo, N., and Norwood, D.L. (1991). InTreatment of Genetic Diseases, Desnick, R. (ed.) (Churchill Livingstone, New York) pp. 69–78.

    Google Scholar 

  29. Brass, E.P., and Beyerinck, R.A. (1987).Metabolism 36781–787.

    Google Scholar 

  30. Bailey, J.E. (1991).Science 2521668–1675.

    Google Scholar 

  31. Stephanopoulos, G., and Vallino, J.J. (1991).Science 2521675–1681.

    Google Scholar 

  32. Capecchi, M. (1989).Science 2441288–1292.

    Google Scholar 

  33. Raff, M.L., Crane, A.M., Jansen, R., Ledley, F.D., and Rosenblatt, D.S. (1991).J. Clin. Invest. 87203–207.

    Google Scholar 

  34. Crane, A.M., Jansen, R., Andrews, E., and Ledley, F.D. (1992).J. Clin. Invest. 89385–391.

    Google Scholar 

  35. Willard, H.F., and Rosenberg, L.E. (1979).Biochem. Genet. 1757–60.

    Google Scholar 

  36. Martin, W., Zempel, G., Hulser, D., and Willecke, K. (1991).Can. Res. 515348–5351.

    Google Scholar 

  37. Wolff, J.A., Yee, J.K., Skelly, H.F., Moores, J.C., Respess, J.G., Friedmann, T., and Leffert, H. (1987).Proc. Natl. Acad. Sci. U.S.A. 843344–3348.

    Google Scholar 

  38. Ledley, F.D., Darlington, G.J., Hahn, T., and Woo, S.L.C. (1987).Proc. Natl. Acad. Sci. U.S.A. 845335–5339.

    Google Scholar 

  39. Wilson, J.M., Jefferson, D.M., Chowdhury, J.R., Novikoff, P.M., Johnston, D.E., and Mulligan, R.C. (1988).Proc. Natl. Acad. Sci. U.S.A. 853014–3018.

    Google Scholar 

  40. Chowdhury, J.R., Grossman, M., Gupta, S., Chowdhury, N.R., Baker, J.R., and Wilson, J.M. (1991).Science 2541802–1805.

    Google Scholar 

  41. Ponder, K.P., Gupta, S., Leland, F., Darlington, G., Finegold, M., DeMayo, J., Ledley, F.D., Chowdhury, J.R., and Woo, S.L.C. (1991).Proc. Natl. Acad. Sci. U.S.A. 881217–1221.

    Google Scholar 

  42. Ledley, F.D., Adams, R.M., Soriano, H.E., et al. (1992).Pediatr. Res. (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkemeyer, M., Stankovics, J., Foy, T. et al. Propionate metabolism in cultured human cells after overexpression of recombinant methylmalonyl CoA mutase: Implications for somatic gene therapy. Somat Cell Mol Genet 18, 493–505 (1992). https://doi.org/10.1007/BF01232646

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01232646

Keywords

Navigation