Skip to main content
Log in

In vivo studies on the effect of UV-radiation on the eye lens in animals

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Ultraviolet light is a non-ionizing radiation that induces photochemical reactions in the tissue. Its spectral A and B ranges are partially absorbed by the cornea and/or lens thus causing damage on the cellular, cell physiological and molecular level. UV-A does not seem to damage the cornea permanently and its effects in the lens have a very prolonged latency period. Typical reactions of the cornea are oedema, punctate keratitis (photoelectric keratitis) and neovascularization. In the lens all reactions that could be evidenced, were located in the epithelium and in the outer cortical fiber cells.In vivo UV-A induces swelling and slight vacuolation of the anterior suture system, but apart from these transient effects, only very limited permanent damage could be demonstrated. UV-B induces the formation of an anterior subcapsular cataract, starting also with vacuolation of the suture system. These morphological characteristics can be visualized at the slitlamp microscope. Histologically, sutural irregularities (UV-A) and epithelial hyperplasia with capsular multiplication (UV-B) as well as desintegration of the anterior suture system could be observed. Patho-physiologically, a reduction of lens fresh weight (UV-B) as well as changes of the equilibrium of reduced and oxidized glutathione (GSH/GSSG) could be demonstrated. On the protein-biochemical level, changes in the ratio of water-soluble versus water-insoluble protein could be evidenced, as well as effects on specific crystallin fractions, namelyα-crystallin. In addition, the appearance of a newly synthetized 31 kDa protein could be demonstrated in UV-B irradiated mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lerman S. Radiant energy and the eye. New York: MacMillan Publishing Co., 1980.

    Google Scholar 

  2. Bener P. Spectral intensity of natural ultraviolet radiation and the dependance of various parameters. In: Urbach F, ed. The biological effects of ultraviolet radiation. Oxford: Pergamon Press, 1972, 312–42.

    Google Scholar 

  3. Schulze R. Strahlenklima der Erde. Darmstadt: Steinkopf, 1970.

    Google Scholar 

  4. Sliney DH. Physical factors in cataractogenesis: ambient ultraviolet radiation and temperature. Invest Ophthal Vis Sci 1986; 27: 781–90.

    PubMed  CAS  Google Scholar 

  5. Javitt JC, Taylor HR. Ocular protection from solar radiation. In: Tasman W, Jaeger EA, eds. Duane's clinical ophthalmology, Vol 5. Philadelphia: JB Lippincott Company, 1991, chapter 55.

    Google Scholar 

  6. Javitt JC, Taylor HR. Absorptive lenses: The need for ocular protection. Clinical Modules for Ophthalmologists. Vol IX, Module 3. American Academy of Ophthalmology, 1991.

  7. Bachem A. Opthalmic ultraviolet action spectra. Am J Ophthalmol 1956; 41: 969–75.

    PubMed  CAS  Google Scholar 

  8. Boettner EA, Wolter JR. Transmission of the ocular media. Invest Ophthalmol 1962; 1: 776–83.

    Google Scholar 

  9. Hemmingsen EA, Douglas EL. Ultraviolet radiation thresholds for corneal injury in antarctic and temperate-zone animals. Comp Biochem Physiol 1970; 32: 593–600.

    Article  PubMed  CAS  Google Scholar 

  10. Sisk DR, Wegener A, Hockwin O. An improved procedure for fixation and embedding of whole, intact lens tissue for light microscopy. Graefes Arch Clin Exp Ophthalmol 1986; 224: 134–42.

    Article  PubMed  CAS  Google Scholar 

  11. Bessems GJH, Dragomirescu V, Möller B, Korte I, Hockwin O. Biochemical analysis of bovine lens sections obtained by a new sectioning device. Lens Eye Tox Res 1989; 6 (1&2): 175–82.

    CAS  Google Scholar 

  12. Kojima M, Wegener A, Hockwin O. Regional enzymatic analysis of UV-B and streptozotocin induced diabetic cataract lenses. Doc Ophthalmol 1991; 77: 139–40.

    Google Scholar 

  13. Hightower K, McCready J. Mechanisms involved in cataract development following near-ultraviolet radiation of cultured lenses. Curr Eye Res 1992; 11: 679–89.

    Article  PubMed  CAS  Google Scholar 

  14. Feldhaus G. Histologische Veränderungen an der Rattenlinse nach kombinierter Behandelung mit Penicillamin und UV-B-Bestrahlung. Thesis, University of Bonn, 1993.

  15. Jose JG, Pitts DG. Wavelength dependency of cataracts in albino mice following chronic exposure. Exp Eye Res 1985; 41: 545–63.

    Article  PubMed  CAS  Google Scholar 

  16. Schmidt, J. Cocataractogene Effekte von UV-A-Bestrahlung und Diabetes Mellitus auf die Rattenlinse. Thesis, University of Bonn, 1988.

  17. Schmidt J, Schmitt C, Wegener A, Ohrloff C, Hockwin O. Syn- und kokataraktogene Wirkung ultravioletter Strahlung auf die Entwicklung einer diabetischen Katarakt. Spektrum Augenheilk 1988; 2: 1–6.

    Google Scholar 

  18. Schmitt C. Tierexperimentelle Untersuchungen früher Veränderungen der Augenlinse nach Röntgen- und UV-A-Bestrahlung. Thesis, University of Bonn, 1988.

  19. Rohde P. Veränderungen im Linsenstoffwechsel unter Röntgen und UV-B-Bestrahlung und Behandlung mit dem Aldose-Reduktasehemmer AL-1576, untersucht an weiblichen Brown-Norway-Ratten. Thesis, University of Bonn, 1991.

  20. Jose JG, Koch H-R, Respondek A. Histologic observations of the lenses of psoralen + UV-A treated albino rats and a theory as to the underlying mechanism. Graefes Arch Clin Exp Ophthalmol 1982; 219: 44–53.

    Article  PubMed  CAS  Google Scholar 

  21. Respondek A. Kataraktentwicklung durch 8-Methoxypsoralen und langwelliges Ultraviolet. Histologische Untersuchungen an der Rattenlinse. Thesis, University of Bonn, 1983.

  22. Kurth RC. Biochemische Veränderungen der Rattenlinse nach UV-B-Bestrahlung und Behandlung mit D-Penicillamin. Thesis, University of Bonn, 1992.

  23. Schmitt C, Schmidt J, Wegener A, Hockwin O. Ultraviolet radiation as a risk factor in cataractogenesis. In: Hockwin O, Sasaki K, Leske MC, eds. Risk factors for cataract development. Dev Ophthalmol 1989; 17: 169–72.

    PubMed  CAS  Google Scholar 

  24. Forker C, Wegener A, Graw J. Effects of UV-B radiation on a hereditary suture cataract in mice. In preparation.

  25. Jose JG, Yielding KL. ‘Unscheduled’ DNA synthesis in lens epithelium following ultraviolet irradiation. Exp Eye Res 1977; 24: 113–19.

    Article  PubMed  CAS  Google Scholar 

  26. Jose JG. The role of DNA damage, its repair and misrepair in the etiology of cataract: A review. Ophthalmic Res 1978; 10: 52–62.

    CAS  Google Scholar 

  27. Dillon J. Photochemical mechanisms in the lens. In: Maisel H, ed. The Ocular Lens. New York: Marcel Dekker, 1985: 349–66.

    Google Scholar 

  28. Zigman S. Photobiology of the lens. In: Maisel H., ed. The Ocular Lens. New York: Marcel Dekker, 1985: 301–47.

    Google Scholar 

  29. Lerman S. Human ultraviolet radiation cataracts. Ophthalmic Res 1980; 12: 303–14.

    Article  Google Scholar 

  30. Schmidt J, Brettner S, Wegener A, Hockwin O. Ultraviolet-induced changes in corneal transmission properties and influence on Scheimpflug photography. Ophthalmic Res 1990; 22: 365–70.

    Article  PubMed  CAS  Google Scholar 

  31. Wegener A, Hockwin O. Relevance of cataract models as a tool to evidence a co- or syncataractogenic potential of drugs in preclinical studies. Plenum Publishers (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegener, A.R. In vivo studies on the effect of UV-radiation on the eye lens in animals. Doc Ophthalmol 88, 221–232 (1995). https://doi.org/10.1007/BF01203676

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01203676

Key words

Navigation