Skip to main content
Log in

Phototoxicity of environmental radiations in human lens: revisiting the pathogenesis of UV-induced cataract

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

The magnitude of cataract pathology is indeed significant as it is the principal cause of blindness worldwide. Also, the prominence of this concept escalates with the current aging population. The burden of the disease is more tangible in developing countries than developed ones. Regarding this concern, there is a gap in classifying the pathogenesis of the ultraviolet (UV) radiation-induced cataracts and explaining the possible cellular and subcellular pathways. In this review, we aim to revisit the effect of UV radiation on cataracts categorizing the cellular pathways involved. This may help for better pharmaceutical treatment alternatives and their wide-reaching availability. Also, in the last section, we provide an overview of the protecting agents utilized as UV shields. Further studies are required to enlighten new treatment modalities for UV radiation-induced pathologies in human lens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bourne RR, Jonas JB, Flaxman SR, Keeffe J, Leasher J, Naidoo K, Parodi MB, Pesudovs K, Price H, White RA, Wong TY, Resnikoff S, Taylor HR, Vision Loss Expert Group of the Global Burden of Disease S (2014) Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990-2010. Br J Ophthalmol 98(5):629–638. https://doi.org/10.1136/bjophthalmol-2013-304033

    Article  PubMed  Google Scholar 

  2. Bourne RRA, Jonas JB, Bron AM, Cicinelli MV, Das A, Flaxman SR, Friedman DS, Keeffe JE, Kempen JH, Leasher J, Limburg H, Naidoo K, Pesudovs K, Peto T, Saadine J, Silvester AJ, Tahhan N, Taylor HR, Varma R, Wong TY, Resnikoff S, Vision Loss Expert Group of the Global Burden of Disease S (2018) Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe in 2015: magnitude, temporal trends and projections. Br J Ophthalmol 102(5):575–585. https://doi.org/10.1136/bjophthalmol-2017-311258

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khairallah M, Kahloun R, Bourne R, Limburg H, Flaxman SR, Jonas JB, Keeffe J, Leasher J, Naidoo K, Pesudovs K, Price H, White RA, Wong TY, Resnikoff S, Taylor HR, Vision Loss Expert Group of the Global Burden of Disease S (2015) Number of people blind or visually impaired by cataract worldwide and in world regions, 1990 to 2010. Invest Ophthalmol Vis Sci 56(11):6762–6769. https://doi.org/10.1167/iovs.15-17201

    Article  PubMed  Google Scholar 

  4. Young AR (2006) Acute effects of UVR on human eyes and skin. Prog Biophys Mol Biol 92(1):80–85. https://doi.org/10.1016/J.PBIOMOLBIO.2006.02.005

    Article  CAS  PubMed  Google Scholar 

  5. Abraham AG, Cox C, West S (2010) The differential effect of ultraviolet light exposure on cataract rate across regions of the lens. Invest Ophthalmol Vis Sci 51(8):3919–3923. https://doi.org/10.1167/iovs.09-4557

    Article  PubMed  PubMed Central  Google Scholar 

  6. Widmark J (1891) Ueber die Durchlässigkeit der Augenmedien für ultraviolette Strahlen. Beitr z Ophthalmologie Stockholm:460–502

  7. Davis G (2016) The evolution of cataract surgery. Mo Med 113(1):58–62

    PubMed  PubMed Central  Google Scholar 

  8. Grzybowski A, Ascaso FJ (2014) Sushruta in 600 BC introduced extraocular expulsion of lens material. Acta Ophthalmol 92(2):194–197

    PubMed  Google Scholar 

  9. Rucker CW (1965) Cataract: a historical perspective. Investig Ophthalmol 4:377–383

    CAS  Google Scholar 

  10. Truscott RJ (2005) Age-related nuclear cataract—oxidation is the key. Exp Eye Res 80(5):709–725. https://doi.org/10.1016/j.exer.2004.12.007

    Article  CAS  PubMed  Google Scholar 

  11. Shanmugam P, Ahn Y (2007) Reference solar irradiance spectra and consequences of their disparities in remote sensing of the ocean colour. Ann Geophys 6:1235–1252. https://doi.org/10.5194/angeo-25-1235-2007

    Article  Google Scholar 

  12. Cutchis P (1974) Stratospheric ozone depletion and solar ultraviolet radiation on Earth. Science 184(4132):13–19. https://doi.org/10.1126/science.184.4132.13

    Article  CAS  PubMed  Google Scholar 

  13. Smith RC, Prezelin BB, Baker KS, Bidigare RR, Boucher NP, Coley T, Karentz D, MacIntyre S, Matlick HA, Menzies D et al (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255(5047):952–959

    CAS  PubMed  Google Scholar 

  14. ISO 21348 Definitions of solar irradiance spectral categories. SpaceWx. https://www.spacewx.com/pdf/SET_21348_2004.pdf. Accessed 20 Feb 2019

  15. McCarty CA, Taylor HR (2002) A review of the epidemiologic evidence linking ultraviolet radiation and cataracts. Dev Ophthalmol 35:21–31

    PubMed  Google Scholar 

  16. WHO Programme for the Prevention of Blindness & World Health Organization, Office of Global and Integrated Environmental Health (1994) The effects of solar UV radiation on the eye: report of an informal consultation, Geneva, 30 August - 3 September 1993 World Health Organization http://wwwwhoint/iris/handle/10665/62584 Accessed 20 Feb 2019

  17. Giese AC (2012) Living with our sun’s ultraviolet rays. Springer Science & Business Media, Berlin

    Google Scholar 

  18. Diffey BL (1991) Solar ultraviolet radiation effects on biological systems. Phys Med Biol 36(3):299–328

    CAS  PubMed  Google Scholar 

  19. Bais AF, McKenzie RL, Bernhard G, Aucamp PJ, Ilyas M, Madronich S, Tourpali K (2015) Ozone depletion and climate change: impacts on UV radiation. Photochem Photobiol Sci 14(1):19–52. https://doi.org/10.1039/c4pp90032d

    Article  CAS  PubMed  Google Scholar 

  20. Dillon J (1995) UV-B as a pro-aging and pro-cataract factor. Doc Ophthalmol 88(3–4):339–344

    CAS  Google Scholar 

  21. Rogers CS, Chan LM, Sims YS, Byrd KD, Hinton DL, Twining SS (2004) The effects of sub-solar levels of UV-A and UV-B on rabbit corneal and lens epithelial cells. Exp Eye Res 78(5):1007–1014. https://doi.org/10.1016/j.exer.2003.12.011

    Article  CAS  PubMed  Google Scholar 

  22. Shoji E (1997) DNA damage and the mechanism following UV-B irradiation in lens epithelial cells. J Jpn Ophthalmol Soc 101(1):40–45

    CAS  Google Scholar 

  23. Artigas C, Navea A, Lopez-Murcia MM, Felipe A, Desco C, Artigas JM (2014) Spectral transmission of the pig lens: effect of ultraviolet A+B radiation. J Fr Ophtalmol 37(10):773–779. https://doi.org/10.1016/j.jfo.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  24. Kinsey VE (1948) Spectral transmission of the eye to ultraviolet radiations. Arch Ophthal 39(4):508–513

    CAS  PubMed  Google Scholar 

  25. Sherashov SG (1970) Spectral sensitivity of the cornea to ultraviolet radiation. Biofizika 15(3):543–544

    CAS  PubMed  Google Scholar 

  26. Cullen AP (2002) Photokeratitis and other phototoxic effects on the cornea and conjunctiva. Int J Toxicol 21(6):455–464. https://doi.org/10.1080/10915810290169882

    Article  CAS  PubMed  Google Scholar 

  27. Dixon AJ, Dixon BF (2004) Ultraviolet radiation from welding and possible risk of skin and ocular malignancy. Med J Aust 181(3):155–157

    PubMed  Google Scholar 

  28. Brown NA (1993) The morphology of cataract and visual performance. Eye (Lond) 7(1):63–67. https://doi.org/10.1038/eye.1993.14

    Article  CAS  Google Scholar 

  29. The Italian- American Cataract Study Group (1991) Risk factors for age-related cortical, nuclear, and posterior subcapsular cataracts. Am J Epidemiol 133(6):541–553

    Google Scholar 

  30. Leske MC, Chylack LT Jr, Wu SY (1991) The lens opacities case-control study: risk factors for cataract. Arch Ophthalmol 109(2):244–251. https://doi.org/10.1001/archopht.1991.01080020090051

    Article  CAS  PubMed  Google Scholar 

  31. Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96(5):614–618. https://doi.org/10.1136/bjophthalmol-2011-300539

    Article  PubMed  Google Scholar 

  32. Brian G, Taylor H (2001) Cataract blindness: challenges for the 21st century. Bull World Health Organ 79(3):249–256

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Javitt JC, Wang F, West SK (1996) Blindness due to cataract: epidemiology and prevention. Annu Rev Public Health 17(1):159–177

    CAS  PubMed  Google Scholar 

  34. Chader GJ, Taylor A (2013) Preface: the aging eye: normal changes, age-related diseases, and sight-saving approaches. Invest Ophthalmol Vis Sci 54(14):ORSF1–ORSF4. https://doi.org/10.1167/iovs.13-12993

    Article  PubMed  PubMed Central  Google Scholar 

  35. Khanna R, Pujari S, Sangwan V (2011) Cataract surgery in developing countries. Curr Opin Ophthalmol 22(1):10–14. https://doi.org/10.1097/ICU.0b013e3283414f50

    Article  PubMed  Google Scholar 

  36. Balogh TS, Velasco MV, Pedriali CA, Kaneko TM, Baby AR (2011) Ultraviolet radiation protection: current available resources in photoprotection. An Bras Dermatol 86(4):732–742

    PubMed  Google Scholar 

  37. Kurzel RB, Wolbarsht M, Yamanashi BS, Staton GW, Borkman RF (1973) Tryptophan excited states and cataracts in the human lens. Nature 241(5385):132–133

    CAS  PubMed  Google Scholar 

  38. Gakamsky A, Duncan RR, Howarth NM, Dhillon B, Buttenschon KK, Daly DJ, Gakamsky D (2017) Tryptophan and non-tryptophan fluorescence of the eye lens proteins provides diagnostics of cataract at the molecular level. Sci Rep 7:40375. https://doi.org/10.1038/srep40375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gakamsky DM, Dhillon B, Babraj J, Shelton M, Smith SD (2011) Exploring the possibility of early cataract diagnostics based on tryptophan fluorescence. J R Soc Interface 8(64):1616–1621. https://doi.org/10.1098/rsif.2010.0608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mizdrak J, Hains PG, Truscott RJW, Jamie JF, Davies MJ (2008) Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage. Free Radic Biol Med 44(6):1108–1119. https://doi.org/10.1016/j.freeradbiomed.2007.12.003

    Article  CAS  PubMed  Google Scholar 

  41. Taylor LM, Andrew Aquilina J, Jamie JF, Truscott RJ (2002) UV filter instability: consequences for the human lens. Exp Eye Res 75(2):165–175

    CAS  PubMed  Google Scholar 

  42. Chylack LT, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu S-Y, Group LSoCS (1993) The lens opacities classification system III. Arch Ophthalmol 111:1506–1506

    Google Scholar 

  43. Pajer V, Tiboldi A, Bae N, Li K, Kang SU, Hopp B, Kolozsvari L, Lubec G, Nogradi A (2013) The molecular background of the differential UV absorbance of the human lens in the 240-400 nm range. Photochem Photobiol 89(4):856–863. https://doi.org/10.1111/php.12063

    Article  CAS  PubMed  Google Scholar 

  44. Babizhayev MA, Yegorov YE (2014) Biomarkers of oxidative stress and cataract. Novel drug delivery therapeutic strategies targeting telomere reduction and the expression of telomerase activity in the lens epithelial cells with N-acetylcarnosine lubricant eye drops: anti-cataract which helps to prevent and treat cataracts in the eyes of dogs and other animals. Curr Drug Deliv 11(1):24–61

    CAS  PubMed  Google Scholar 

  45. Thrimawithana TR, Rupenthal ID, Rasch SS, Lim JC, Morton JD, Bunt CR (2018) Drug delivery to the lens for the management of cataracts. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2018.03.009

    CAS  PubMed  Google Scholar 

  46. Nguyen SL (2017) Compositions for the treatment of cataracts. U.S. Patent 2017/0027961 A1 Feb 2017

  47. Chen JL, Chen A (2017) Older eyes, cataracts, Lasik and laser eye surgery. Astronomy for Older Eyes. Springer, In, pp 37–54. https://doi.org/10.1007/978-3-319-52413-9_4

    Book  Google Scholar 

  48. Talebizadeh N, Yu Z, Kronschlager M, Soderberg P (2014) Time evolution of active caspase-3 labelling after in vivo exposure to UVR-300 nm. Acta Ophthalmol 92(8):769–773. https://doi.org/10.1111/aos.12407

    Article  CAS  PubMed  Google Scholar 

  49. Ayala MN, Soderberg PG (2004) Vitamin E can protect against ultraviolet radiation-induced cataract in albino rats. Ophthalmic Res 36(5):264–269. https://doi.org/10.1159/000081206

    Article  CAS  PubMed  Google Scholar 

  50. Kador PF, Guo C, Kawada H, Randazzo J, Blessing K (2014) Topical nutraceutical Optixcare EH ameliorates experimental ocular oxidative stress in rats. J Ocul Pharmacol Ther 30(7):593–602. https://doi.org/10.1089/jop.2014.0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kleinmann G, Hoffman P, Schechtman E, Pollack A (2002) Microscope-induced retinal phototoxicity in cataract surgery of short duration. Ophthalmology 109(2):334–338

    PubMed  Google Scholar 

  52. Aldana BZ (2011) Phototoxicity: ultraviolet radiation and cataracts. Arch Soc Esp Oftalmol 86(9):306–306. https://doi.org/10.1016/j.oftal.2011.06.013

    Article  PubMed  Google Scholar 

  53. Vola J, Petrakian J, Mardrus R (1988) Phototoxicity of ultraviolet rays on crystalline lens and retina. Study of the optic transmission of implants with or without anti-UV treatment. J Francais D’ophtalmologie 11(3):277–283

    CAS  Google Scholar 

  54. Sliney DH (1995) UV radiation ocular exposure dosimetry. J Photochem Photobiol B 31(1–2):69–77

    CAS  PubMed  Google Scholar 

  55. Taylor HR, West SK, Rosenthal FS, Munoz B, Newland HS, Abbey H, Emmett EA (1988) Effect of ultraviolet radiation on cataract formation. N Engl J Med 319(22):1429–1433. https://doi.org/10.1056/NEJM198812013192201

    Article  CAS  PubMed  Google Scholar 

  56. Cetinel S, Semenchenko V, Cho JY, Sharaf MG, Damji KF, Unsworth LD, Montemagno C (2017) UV-B induced fibrillization of crystallin protein mixtures. PLoS One 12(5):e0177991. https://doi.org/10.1371/journal.pone.0177991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lofgren S (2017) Solar ultraviolet radiation cataract. Exp Eye Res 156:112–116. https://doi.org/10.1016/j.exer.2016.05.026

    Article  CAS  PubMed  Google Scholar 

  58. Hains PG, Truscott RJ (2007) Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. J Proteome Res 6(10):3935–3943. https://doi.org/10.1021/pr070138h

    Article  CAS  PubMed  Google Scholar 

  59. Wilmarth P, Tanner S, Dasari S, Nagalla S, Riviere M, Bafna V, Pevzner P, David L (2006) Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility? J Proteome Res 5(10):2554–2566. https://doi.org/10.1021/pr050473a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miesbauer LR, Zhou X, Yang Z, Sun Y, Smith D, Smith J (1994) Post-translational modifications of water-soluble human lens crystallins from young adults. J Biol Chem 269(17):12494–12502

    CAS  PubMed  Google Scholar 

  61. Weinreb O, Dovrat A, Dunia I, Benedetti EL, Bloemendal H (2001) UV-A-related alterations of young and adult lens water-insoluble alpha-crystallin, plasma membranous and cytoskeletal proteins. Eur J Biochem 268(3):536–543

    CAS  PubMed  Google Scholar 

  62. Varma SD, Chand D, Sharma YR, Kuck JF Jr, Richards RD (1984) Oxidative stress on lens and cataract formation: role of light and oxygen. Curr Eye Res 3(1):35–57

    CAS  PubMed  Google Scholar 

  63. Lu Q, Hao M, Wu W, Zhang N, Isaac AT, Yin J, Zhu X, Du L, Yin X (2018) Antidiabetic cataract effects of GbE, rutin and quercetin are mediated by the inhibition of oxidative stress and polyol pathway. Acta Biochim Pol 65(1):35–41. https://doi.org/10.18388/abp.2016_1387

    Article  CAS  PubMed  Google Scholar 

  64. Kaur J, Kukreja S, Kaur A, Malhotra N, Kaur R (2012) The oxidative stress in cataract patients. J Clin Diagn Res 6(10):1629–1632. https://doi.org/10.7860/JCDR/2012/4856.2626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Spector A, Wang GM, Wang RR, Garner WH, Moll H (1993) The prevention of cataract caused by oxidative stress in cultured rat lenses. I. H2O2 and photochemically induced cataract. Curr Eye Res 12(2):163–179

    CAS  PubMed  Google Scholar 

  66. Zhang Y, Zhang L, Sun D, Li Z, Wang L, Liu P (2011) Genetic polymorphisms of superoxide dismutases, catalase, and glutathione peroxidase in age-related cataract. Mol Vis 17:2325

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cejková J, Stipek S, Crkovska J, Ardan T (2000) Changes of superoxide dismutase, catalase and glutathione peroxidase in the corneal epithelium after UVB rays. Histochemical and biochemical study. Histol Histopathol 15(4):1043–1050. https://doi.org/10.14670/HH-15.1043

    Article  PubMed  Google Scholar 

  68. Fecondo JV, Augusteyn RC (1983) Superoxide dismutase, catalase and glutathione peroxidase in the human cataractous lens. Exp Eye Res 36(1):15–23

    CAS  PubMed  Google Scholar 

  69. Bova LM, Sweeney MH, Jamie JF, Truscott RJ (2001) Major changes in human ocular UV protection with age. Invest Ophthalmol Vis Sci 42(1):200–205

    CAS  PubMed  Google Scholar 

  70. Miric DJ, Kisic BB, Zoric LD, Mitic RV, Miric BM, Dragojevic IM (2013) Xanthine oxidase and lens oxidative stress markers in diabetic and senile cataract patients. J Diabetes Complicat 27(2):171–176. https://doi.org/10.1016/j.jdiacomp.2012.09.005

    Article  PubMed  Google Scholar 

  71. Ji Y, Cai L, Zheng T, Ye H, Rong X, Rao J, Lu Y (2015) The mechanism of UVB irradiation induced-apoptosis in cataract. Mol Cell Biochem 401(1–2):87–95. https://doi.org/10.1007/s11010-014-2294-x

    Article  CAS  PubMed  Google Scholar 

  72. Babizhayev MA (2011) Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease. Cell Biochem Funct 29(3):183–206. https://doi.org/10.1002/cbf.1737

    Article  CAS  PubMed  Google Scholar 

  73. Bantseev V, Youn HY (2006) Mitochondrial “movement” and lens optics following oxidative stress from UV-B irradiation: cultured bovine lenses and human retinal pigment epithelial cells (ARPE-19) as examples. Ann N Y Acad Sci 1091:17–33. https://doi.org/10.1196/annals.1378.051

    Article  CAS  PubMed  Google Scholar 

  74. Wu D, Zhao J, Wu D, Zhang J (2011) Ultraviolet A exposure induces reversible disruption of gap junction intercellular communication in lens epithelial cells. Int J Mol Med 28(2):239–245. https://doi.org/10.3892/ijmm.2011.665

    Article  CAS  PubMed  Google Scholar 

  75. Chan AW, Ho YS, Chung SK, Chung SS (2008) Synergistic effect of osmotic and oxidative stress in slow-developing cataract formation. Exp Eye Res 87(5):454–461. https://doi.org/10.1016/j.exer.2008.08.001

    Article  CAS  PubMed  Google Scholar 

  76. Mesa R, Bassnett S (2013) UV-B-induced DNA damage and repair in the mouse lens. Invest Ophthalmol Vis Sci 54(10):6789–6797. https://doi.org/10.1167/iovs.13-12644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Osnes-Ringen O, Azqueta AO, Moe MC, Zetterstrom C, Roger M, Nicolaissen B, Collins AR (2013) DNA damage in lens epithelium of cataract patients in vivo and ex vivo. Acta Ophthalmol 91(7):652–656. https://doi.org/10.1111/j.1755-3768.2012.02500.x

    Article  CAS  PubMed  Google Scholar 

  78. Yu X, Zheng H, Chan MT, Wu WKK (2017) MicroRNAs: new players in cataract. Am J Transl Res 9(9):3896–3903

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wu C, Liu Z, Ma L, Pei C, Qin L, Gao N, Li J, Yin Y (2017) MiRNAs regulate oxidative stress related genes via binding to the 3' UTR and TATA-box regions: a new hypothesis for cataract pathogenesis. BMC Ophthalmol 17(1):142–142. https://doi.org/10.1186/s12886-017-0537-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang S, Guo C, Yu M, Ning X, Yan B, Zhao J, Yang A, Yan H (2018) Identification of H2O2 induced oxidative stress associated microRNAs in HLE-B3 cells and their clinical relevance to the progression of age-related nuclear cataract. BMC Ophthalmol 18(1):93–93. https://doi.org/10.1186/s12886-018-0766-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu J, Hou Q, Dong XD, Wang Z, Chen X, Zheng D, Zhou L, He C, Liu M, Tu L, Qu J (2015) Targeted deletion of the murine Lgr4 gene decreases lens epithelial cell resistance to oxidative stress and induces age-related cataract formation. PLoS One 10(3):e0119599. https://doi.org/10.1371/journal.pone.0119599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Motohashi H, Yamamoto M (2004) Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10(11):549–557. https://doi.org/10.1016/j.molmed.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  83. Liu XF, Hao JL, Xie T, Malik TH, Lu CB, Liu C, Shu C, Lu CW, Zhou DD (2017) Nrf2 as a target for prevention of age-related and diabetic cataracts by against oxidative stress. Aging Cell 16(5):934–942. https://doi.org/10.1111/acel.12645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lerman S (1982) Ocular phototoxicity and psoralen plus ultraviolet radiation (320–400 nm) therapy: an experimental and clinical evaluation. J Natl Cancer Inst 69(1):287–302

    CAS  PubMed  Google Scholar 

  85. An MJ, Kim CH, Nam GY, Kim DH, Rhee S, Cho SJ, Kim JW (2018) Transcriptome analysis for UVB-induced phototoxicity in mouse retina. Environ Toxicol 33(1):52–62. https://doi.org/10.1002/tox.22494

    Article  CAS  PubMed  Google Scholar 

  86. Bhuyan DK, Bhuyan KC (1994) Assessment of oxidative stress to eye in animal model for cataract. Methods Enzymol 233:630–639

    CAS  PubMed  Google Scholar 

  87. Bassnett S, Shi Y, Vrensen GFJM (2011) Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc B Biol Sci 366(1568):1250–1264. https://doi.org/10.1098/rstb.2010.0302

    Article  Google Scholar 

  88. Andley UP (2007) Crystallins in the eye: function and pathology. Prog Retin Eye Res 26:78–98. https://doi.org/10.1016/J.PRETEYERES.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  89. Horwitz J, Bova MP, Ding L-L, Haley DA, Stewart PL (1999) Lens α-crystallin: function and structure. Eye 13:403. https://doi.org/10.1038/eye.1999.114

    Article  PubMed  Google Scholar 

  90. Weinreb O, van Boekel MA, Dovrat A, Bloemendal H (2000) Effect of UV-A light on the chaperone-like properties of young and old lens alpha-crystallin. Invest Ophthalmol Vis Sci 41(1):191–198

    CAS  PubMed  Google Scholar 

  91. van Boekel MA, Hoogakker SE, Harding JJ, de Jong WW (1996) The influence of some post-translational modifications on the chaperone-like activity of alpha-crystallin. Ophthalmic Res 28(Suppl 1):32–38. https://doi.org/10.1159/000267940

    Article  PubMed  Google Scholar 

  92. Fujii N, Uchida H, Saito T (2004) The damaging effect of UV-C irradiation on lens alpha-crystallin. Mol Vis 10:814–820

    PubMed  Google Scholar 

  93. Andley UP, Patel HC, Xi JH (2002) The R116C mutation in alpha A-crystallin diminishes its protective ability against stress-induced lens epithelial cell apoptosis. J Biol Chem 277(12):10178–10186. https://doi.org/10.1074/jbc.M109211200

    Article  CAS  PubMed  Google Scholar 

  94. Ehrenshaft M, Roberts JE, Mason RP (2013) Hypericin-mediated photooxidative damage of alpha-crystallin in human lens epithelial cells. Free Radic Biol Med 60:347–354. https://doi.org/10.1016/j.freeradbiomed.2013.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Moran SD, Zhang TO, Decatur SM, Zanni MT (2013) Amyloid fiber formation in human gammaD-crystallin induced by UV-B photodamage. Biochemistry 52(36):6169–6181. https://doi.org/10.1021/bi4008353

    Article  CAS  PubMed  Google Scholar 

  96. Ji F, Jung J, Koharudin LM, Gronenborn AM (2013) The human W42R gammaD-crystallin mutant structure provides a link between congenital and age-related cataracts. J Biol Chem 288(1):99–109. https://doi.org/10.1074/jbc.M112.416354

    Article  CAS  PubMed  Google Scholar 

  97. Schafheimer N, King J (2013) Tryptophan cluster protects human gammaD-crystallin from ultraviolet radiation-induced photoaggregation in vitro. Photochem Photobiol 89(5):1106–1115. https://doi.org/10.1111/php.12096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Schafheimer N, Wang Z, Schey K, King J (2014) Tyrosine/cysteine cluster sensitizing human gammaD-crystallin to ultraviolet radiation-induced photoaggregation in vitro. Biochemistry 53(6):979–990. https://doi.org/10.1021/bi401397g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xia Z, Yang Z, Huynh T, King JA, Zhou R (2013) UV-radiation induced disruption of dry-cavities in human gammaD-crystallin results in decreased stability and faster unfolding. Sci Rep 3:1560–1560. https://doi.org/10.1038/srep01560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Roskamp KW, Montelongo DM, Anorma CD, Bandak DN, Chua JA, Malecha KT, Martin RW (2017) Multiple aggregation pathways in human gammaS-crystallin and its aggregation-prone G18V variant. Invest Ophthalmol Vis Sci 58(4):2397–2405. https://doi.org/10.1167/iovs.16-20621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Serebryany E, King JA (2014) The betagamma-crystallins: native state stability and pathways to aggregation. Prog Biophys Mol Biol 115(1):32–41. https://doi.org/10.1016/j.pbiomolbio.2014.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sergeev YV, Hejtmancik JF, Wingfield PT (2004) Energetics of domain–domain interactions and entropy driven association of β-crystallins. Biochemistry 43(2):415–424. https://doi.org/10.1021/bi034617f

    Article  CAS  PubMed  Google Scholar 

  103. Xu J, Wang S, Zhao W-J, Xi Y-B, Yan Y-B, Yao K (2012) The congenital cataract-linked A2V mutation impairs tetramer formation and promotes aggregation of βB2-crystallin. PLoS One 7(12):e51200. https://doi.org/10.1371/journal.pone.0051200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Avila F, Friguet B, Silva E (2015) Photosensitizing activity of endogenous eye lens chromophores: an attempt to unravel their contributions to photo-aging and cataract disease. Photochem Photobiol 91(4):767–779. https://doi.org/10.1111/php.12443

    Article  CAS  PubMed  Google Scholar 

  105. Tweeddale HJ, Hawkins CL, Janmie JF, Truscott RJW, Davies MJ (2016) Cross-linking of lens crystallin proteins induced by tryptophan metabolites and metal ions: implications for cataract development. Free Radic Res 50(10):1116–1130. https://doi.org/10.1080/10715762.2016.1210802

    Article  CAS  PubMed  Google Scholar 

  106. Kurzel RB, Wolbarsht M, Yamanashi BS, Staton GW, Borkman RF (1973) Tryptophan excited states and cataracts in the human lens 20. Nature 241(5385):132–133. https://doi.org/10.1038/241132a0

    Article  CAS  PubMed  Google Scholar 

  107. De La Rochette A, Birlouez-Aragon I, Silva E, Morlière P (2003) Advanced glycation endproducts as UVA photosensitizers of tryptophan and ascorbic acid: consequences for the lens. Biochim Biophys Acta Gen Subj 1621(3):235–241. https://doi.org/10.1016/S0304-4165(03)00072-2

    Article  CAS  Google Scholar 

  108. Stitt AW (2001) Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol 85(6):746–753. https://doi.org/10.1136/bjo.85.6.746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Katta AV, Suryakar A, Katkam R, Shaikh K, Ghodake SR (2009) Glycation of lens crystalline protein in the pathogenesis of various forms of cataract

  110. Linetsky M, Raghavan CT, Johar K, Fan X, Monnier VM, Vasavada AR, Nagaraj RH (2014) UVA light-excited kynurenines oxidize ascorbate and modify lens proteins through the formation of advanced glycation end products: implications for human lens aging and cataract formation. J Biol Chem 289(24):17111–17123. https://doi.org/10.1074/jbc.M114.554410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mancini M, Edwards AM, Becker MI (2000) Reactivity of monoclonal antibodies against a tryptophan-riboflavin adduct toward irradiated and non-irradiated bovine-eye-lens protein fractions: an indicator of in vivo visible-light-mediated phototransformations. J Photochem Photobiol B Biol 55(1):9–15. https://doi.org/10.1016/S1011-1344(00)00014-2

    Article  CAS  Google Scholar 

  112. Ibuki Y, Goto R (2002) Antiapoptotic effects induced by different wavelengths of ultraviolet light. Photochem Photobiol 75(5):495–502

    CAS  PubMed  Google Scholar 

  113. Long AC, Colitz CM, Bomser JA (2004) Apoptotic and necrotic mechanisms of stress-induced human lens epithelial cell death. Exp Biol Med 229(10):1072–1080

    CAS  Google Scholar 

  114. Kim S-T, Koh J-W (2011) Mechanisms of apoptosis on human lens epithelium after ultraviolet light exposure. Korean J Ophthalmol 25(3):196–201. https://doi.org/10.3341/kjo.2011.25.3.196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ricci J-E, Gottlieb RA, Green DR (2003) Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 160(1):65–75. https://doi.org/10.1083/jcb.200208089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Siddiqui WA, Ahad A, Ahsan H (2015) The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Arch Toxicol 89(3):289–317. https://doi.org/10.1007/s00204-014-1448-7

    Article  CAS  PubMed  Google Scholar 

  117. Roy S (2000) Caspases at the heart of the apoptotic cell death pathway. Chem Res Toxicol 13(10):961–962

    CAS  PubMed  Google Scholar 

  118. Andersson M, Honarvar A, Sjöstrand J, Peterson A, Karlsson J-O (2003) Decreased caspase-3 activity in human lens epithelium from posterior subcapsular cataracts. Exp Eye Res 76(2):175–182

    CAS  PubMed  Google Scholar 

  119. Yao H, Tang X, Shao X, Feng L, Wu N, Yao K (2007) Parthenolide protects human lens epithelial cells from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and caspase-9. Cell Res 17(6):565. https://doi.org/10.1038/cr.2007.6

    Article  CAS  PubMed  Google Scholar 

  120. Jia Y, Qin Q, Fang CP, Shen W, Sun TT, Huang YL, Li WJ, Deng AM (2018) UVB induces apoptosis via downregulation of CALML3-dependent JNK1/2 and ERK1/2 pathways in cataract. Int J Mol Med 41(5):3041–3050. https://doi.org/10.3892/ijmm.2018.3478

    Article  CAS  PubMed  Google Scholar 

  121. Bomser JA (2002) Selective induction of mitogen-activated protein kinases in human lens epithelial cells by ultraviolet radiation. J Biochem Mol Toxicol 16(1):33–40

    CAS  PubMed  Google Scholar 

  122. Ji Y, Rong X, Li D, Cai L, Rao J, Lu Y (2016) Inhibition of cartilage acidic protein 1 reduces ultraviolet B irradiation induced-apoptosis through P38 mitogen-activated protein kinase and Jun amino-terminal kinase pathways. Cell Physiol Biochem 39(6):2275–2286. https://doi.org/10.1159/000447920

    Article  CAS  PubMed  Google Scholar 

  123. Huang L-L, Hess JL, Bunce G (1990) DNA damage, repair, and replication in selenite-induced cataract in rat lens. Curr Eye Res 9(11):1041–1050

    CAS  PubMed  Google Scholar 

  124. Pollreisz A, Schmidt-Erfurth U (2010) Diabetic cataract—pathogenesis, epidemiology and treatment. J Ophthalmol 2010:608751. https://doi.org/10.1155/2010/608751

    Article  PubMed  PubMed Central  Google Scholar 

  125. Babizhayev MA, Yegorov YE (2016) Reactive oxygen species and the aging eye: specific role of metabolically active mitochondria in maintaining lens function and in the initiation of the oxidation-induced maturity onset cataract—a novel platform of mitochondria-targeted antioxidants with broad therapeutic potential for redox regulation and detoxification of oxidants in eye diseases. Am J Ther 23(1):e98–e117. https://doi.org/10.1097/MJT.0b013e3181ea31ff

    Article  PubMed  Google Scholar 

  126. Wang Y, Zhang J, Wu J, Guan H (2017) Expression of DNA repair genes in lens cortex of age-related cortical cataract. Exp Mol Pathol 102(2):219–223. https://doi.org/10.1016/j.yexmp.2017.02.006

    Article  CAS  PubMed  Google Scholar 

  127. Falcão MS, Freitas-Costa P, Beato JN, Pinheiro-Costa J, Rocha-Sousa A, Carneiro Â, Brandão EM, Falcão-Reis F (2017) Safety and effectiveness of cataract surgery with simultaneous intravitreal anti-VEGF in patients with previously treated exudative age-related macular degeneration. Acta medica portuguesa 30(2):127–133. https://doi.org/10.20344/amp.7850

    Article  PubMed  Google Scholar 

  128. Thiagarajan R, Manikandan R (2013) Antioxidants and cataract. Free Radic Res 47(5):337–345. https://doi.org/10.3109/10715762.2013.777155

    Article  CAS  PubMed  Google Scholar 

  129. Gritz DC, Srinivasan M, Smith SD, Kim U, Lietman TM, Wilkins JH, Priyadharshini B, John RK, Aravind S, Prajna NV (2006) The Antioxidants in Prevention of Cataracts Study: effects of antioxidant supplements on cataract progression in South India. Br J Ophthalmol 90(7):847–851. https://doi.org/10.1136/bjo.2005.088104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhao W, Zhao W, Zhao J, Wang D, Li J (2015) Screening of potential target genes for cataract by analyzing mRNA expression profile of mouse Hsf4-null lens. BMC Ophthalmol 15(1):76. https://doi.org/10.1186/s12886-015-0066-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Valverde GL, Martin EG, Povés JML, Llorens VP, Júlvez LEP (2016) Study of association between pre-senile cataracts and the polymorphisms rs2228000 in XPC and rs1042522 in p53 in Spanish population. PLoS One 11(6):e0156317. https://doi.org/10.1371/journal.pone.0156317

    Article  CAS  Google Scholar 

  132. Lim PX, Patel DR, Poisson KE, Basuita M, Tsai C, Lyndaker AM, Hwang B-J, Lu A-L, Weiss RS (2015) Genome protection by the 9-1-1 complex subunit HUS1 requires clamp formation, DNA contacts, and ATR signaling-independent effector functions. J Biol Chem 290(24):14826–14840. https://doi.org/10.1074/jbc.M114.630640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ayaki M, Negishi K, Tsubota K (2014) Rejuvenation effects of cataract surgery with ultraviolet blocking intra-ocular lens on circadian rhythm and gait speed. Rejuvenation Res 17(4):359–365. https://doi.org/10.1089/rej.2014.1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Augustin A (2014) Reliable UV-light protection in intraocular lenses--scientific rationale and quality requirements. Klinische Monatsblatter fur Augenheilkunde 231(9):901–908. https://doi.org/10.1055/s-0034-1368566

    Article  CAS  PubMed  Google Scholar 

  135. Abdel-Ghaffar A, Ghanem HM, Ahmed EK, Hassanin OA, Mohamed RG (2018) Ursodeoxycholic acid suppresses the formation of fructose/streptozotocin-induced diabetic cataract in rats. Fundam Clin Pharmacol 32(6):627–640. https://doi.org/10.1111/fcp.12385

    Article  CAS  PubMed  Google Scholar 

  136. Lodovici M, Caldini S, Morbidelli L, Akpan V, Ziche M, Dolara P (2009) Protective effect of 4-coumaric acid from UVB ray damage in the rabbit eye. Toxicology 255(1–2):1–5. https://doi.org/10.1016/j.tox.2008.09.011

    Article  CAS  PubMed  Google Scholar 

  137. Avetisov S, Polunin G, Sheremet N, Makarov I, Fedorov A, Karpova O, Muranov K, Dizhevskaia A, Soustov L, Chelnokov E (2008) Chaperon-like anticataract agents, the antiaggregants of lens crystallin. Communication 4. Study of the effect of a mixture of di-and tetrapeptides on a prolonged rat model of UV-induced cataract. Vestnik oftalmologii 124(2):12–16135

    CAS  PubMed  Google Scholar 

  138. Mayer U, Müller Y, Blüthner K (2001) Vitamins C and E protect cultures of bovine lens epithelium from the damaging effects of blue light (430 nm) and UVA light (300-400 nm). Klinische Monatsblatter fur Augenheilkunde 218(2):116–120. https://doi.org/10.1055/s-2001-12255

    Article  CAS  PubMed  Google Scholar 

  139. Danielczyk K, Dziegiel P (2009) The expression of MT1 melatonin receptor and Ki-67 antigen in melanoma malignum. Anticancer Res 29(10):3887–3895

    PubMed  Google Scholar 

  140. Varma SD, Hegde KR, Kovtun S (2008) UV-B-induced damage to the lens in vitro: prevention by caffeine. J Ocul Pharmacol Ther 24(5):439–444. https://doi.org/10.1089/jop.2008.0035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hegde KR, Kovtun S, Varma SD (2007) Induction of ultraviolet cataracts in vitro: prevention by pyruvate. J Ocul Pharmacol Ther 23(5):492–502. https://doi.org/10.1089/jop.2007.0038

    Article  CAS  PubMed  Google Scholar 

  142. Liao J-H, Lin I-L, Huang K-F, Kuo P-T, Wu S-H, Wu T-H (2014) Carnosine ameliorates lens protein turbidity formations by inhibiting calpain proteolysis and ultraviolet C-induced degradation. J Agric Food Chem 62(25):5932–5938. https://doi.org/10.1021/jf5017708

    Article  CAS  PubMed  Google Scholar 

  143. Hu C-C, Liao J-H, Hsu K-Y, Lin IL, Tsai M-H, Wu W-H, Wei T-T, Huang Y-S, Chiu S-J, Chen H-Y, Wu S-H, Wu T-H (2011) Role of pirenoxine in the effects of catalin on in vitro ultraviolet-induced lens protein turbidity and selenite-induced cataractogenesis in vivo. Mol Vis 17:1862–1870

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Attanasio F, Cataldo S, Fisichella S, Nicoletti S, Nicoletti VG, Pignataro B, Savarino A, Rizzarelli E (2009) Protective effects of L-and D-carnosine on α-crystallin amyloid fibril formation: implications for cataract disease. Biochemistry 48(27):6522–6531. https://doi.org/10.1021/bi900343n

    Article  CAS  PubMed  Google Scholar 

  145. Kronschlager M, Galichanin K, Ekstrom J, Lou MF, Soderberg PG (2012) Protective effect of the thioltransferase gene on in vivo UVR-300 nm-induced cataract. Invest Ophthalmol Vis Sci 53(1):248–252. https://doi.org/10.1167/iovs.11-8504

    Article  CAS  PubMed  Google Scholar 

  146. Liu L, Yu R, Shi Y, Dai Y, Zeng Z, Guo X, Ji Q, Wang G, Zhong J (2014) Transduced protein transduction domain linked HSP27 protected LECs against UVB radiation-induced damage. Exp Eye Res 120:36–42. https://doi.org/10.1016/j.exer.2013.12.016

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Aslani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamari, F., Hallaj, S., Dorosti, F. et al. Phototoxicity of environmental radiations in human lens: revisiting the pathogenesis of UV-induced cataract. Graefes Arch Clin Exp Ophthalmol 257, 2065–2077 (2019). https://doi.org/10.1007/s00417-019-04390-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04390-3

Keywords

Navigation