Skip to main content
Log in

A 1,4-β-D-glucan-synthase system fromDictyostelium discoideum

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Particulate membrane preparations have been isolated from culminatingDictyostelium discoideum cells. The preparations incorporated glucose from uridine 5′-diphosphate-glucose into a glucose polymer or polymers. These have been shown to be homopolymers ofβ-linked glucose. A high percentage (78% by methylation analysis) of the linkages formed are 1,4-linkages and a lower percentage (12%) are 1,3-linkages. The glucan-synthase complex present in the particulate membrane preparation has an apparent Km of 0.28 mM and a Vmax of 1.59 nmol·min−1·(mg protein)−1. The enzyme system is dependent upon Mg2+ and cellobiose for maximal activity, but is inhibited by millimolar levels of Ca2+. Particulate membrane preparations were made from cells at various times during a synchronous developmental time course and demonstrated that the glucan-synthase activity appeared at the tight-aggregate stage of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EDTA:

ethylenediaminetetraacetic acid

EGTA:

ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

Hepes:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

UDP:

uridine 5′-diphosphate

UDPGlc:

UDP-glucose

References

  • Aloni, Y., Cohen, R., Benziman, M., Delmer, D.P. (1983) Solubilization of the UDP-glucose: 1:4-β-glucosyltransferase (cellulose synthase) fromAcetobacter xylinum. J. Biol. Chem.258, 4419–4423

    Google Scholar 

  • Aloni, Y., Delmer, D.P., Benziman, M.. (1982) Achievement of high rates of in vitro synthesis of 1,4-β-d-glucan: activation by cooperative interaction of theAcetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. Proc. Natl. Acad. Sci. USA79, 6448–6452

    Google Scholar 

  • Blanton, W.E., Villemez, C.L. (1978) Molecular size and chain length distribution inAcanthamoeba cellulose. J. Protozool.25, 264–267

    Google Scholar 

  • Bureau, T.E., Brown, R.M. (1987) In vitro synthesis of cellulose II from a cytoplasmic membrane fraction ofAcetobacter xylinum. Proc. Natl. Acad. Sci. USA84, 6985–6989

    Google Scholar 

  • Callaghan, T., Ross, P., Weinberger-Ohana, P., Garden, G., Benziman, M. (1988a) β-glucoside activators of mung bean UDP-glucose: β-glucan synthase. I. Identification of an endogenous β-linked glucolipid activator. Plant Physiol.86, 1099–1103

    Google Scholar 

  • Callaghan, T., Ross, P., Weinberger-Ohana, P., Garden, G., Benziman, M. (1988b) β-Glucoside activators of mung bean UDP-glucose:β-glucan synthase. II. Comparison of effects of an endogenous β-linked glucolipid with synthetic n-alkyl β-d-monoglucopyranosides. Plant Physiol.86, 1104–1107

    Google Scholar 

  • Cassab, G.I., Varner, T.E. (1988) Cell wall proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol.39, 321–353

    Google Scholar 

  • Dalessandro, G., Piro, G., Northcote, D.H. (1986) Glucomannan-synthase activity in differentiating cells ofPinus sylvestris L. Planta169, 564–574

    Google Scholar 

  • Delmer, D.P. (1983) Biosynthesis of cellulose. Adv. Carbohydr. Chem. Biochem.41, 105–153

    Google Scholar 

  • Delmer, D.P. (1987) Cellulose biosynthesis. Annu. Rev. Plant Physiol.38, 259–290

    Google Scholar 

  • Delmer, D.P. (1988) The relationship between the synthesis of cellulose and callose in higher plants. Cellulose Conf. Progr. and Abstr., p. 36, State University of New York, Syracuse, USA

    Google Scholar 

  • Delmer, D.P., Cooper, G., Alexander, D., Cooper, J., Hayashi, T., Nitsche, C., Thelen, M. (1985) New approaches to the study of cellulose biosynthesis. J. Cell Sci. Suppl.2, 33–50

    Google Scholar 

  • Duggleby, R.G. (1981) A nonlinear regression program for small computers. Anal. Biochem.110, 9–18

    Google Scholar 

  • Fèvre, M. (1979a) Glucanases, glucan synthases and wall growth inSaprolegnia monoica. In: Fungal walls and hyphal growth, pp. 225–263, Burnett, J.H., Trinci, A.P.J., eds. Cambridge University Press, Cambridge

    Google Scholar 

  • Fèvre, M. (1979b) Digitonin solubilization and protease stimulation ofβ glucan synthetases ofSaprolegnia. Z. Pflanzenphysiol.95, 129–140

    Google Scholar 

  • Fèvre, M., Rougier, M. (1981) β-1–3- and β-1–4-glucan synthesis by membrane fractions from the fungusSaprolegnia. Planta151, 232–241

    Google Scholar 

  • Freeze, H., Loomis, W.F. (1977) Isolation and characterization of a component of the surface sheath ofDictyostelium discoideum. J. Biol. Chem.252, 820–824

    Google Scholar 

  • Freeze, H., Loomis, W.F. (1978) Chemical analysis of stalk components ofDictyostelium discoideum. Biochim. Biophys. Acta539, 529–537

    Google Scholar 

  • Fry, S.C. (1988) The growing plant cell wall: chemical and metabolic analysis. Longman Scientific and Technical, Harlow, Essex

    Google Scholar 

  • George, R.P., Hohl, H.R. (1969) Electron microscopy of crystalline micelles in cellulose elementary fibrils ofDictyostelium discoideum. Planta88, 67–72

    Google Scholar 

  • Gezelius, K., Rånby, B.G. (1957) Morphology and fine structure of the slime moldDictyostelium discoideum. Exp. Cell Res.12, 265–289

    Google Scholar 

  • Goodloe-Holland, C.M., Luna, E.J. (1987) Purification and characterization ofDictyostelium discoideum plasma membranes. In: Methods in cell biology, vol. 28, pp. 103–128, Spudich, J.A., ed. Academic Press, Orlando

    Google Scholar 

  • Haigler, C.H. (1985) The functions and biogenesis of native cellulose. In: Cellulose chemistry and its applications, pp. 30–83, Nevell, T.P., Zeronian, S.H., eds. Ellis Horwood, Chichester UK

    Google Scholar 

  • Hayashi, T., Read, S.M., Bussell, J., Thelen, M., Lin, F.-C., Brown, R.M., Delmer, D.P. (1987) UDP-glucose:(1–3)-β-glucan synthases from mung bean and cotton. Differential effects of Ca2+ and Mg2+ on enzyme properties and on macromolecular structure of the glucan product. Plant Physiol.83, 1054–1062

    Google Scholar 

  • Hemmes, D.E., Kojima-Buddenhagen, E.S., Hohl, H.R. (1972) Structural and enzymatic analysis of the spore wall layers inDictyostelium discoideum. J. Ultrastruct. Res.41, 406–417

    Google Scholar 

  • Hohl, H.R., Jehli, J. (1973) The presence of cellulose microfibrils in the proteinaceous slime track ofDictyostelium discoideum. Arch. Mikrobiol.92, 179–187

    Google Scholar 

  • Itoh, T., Legge, R.L., Brown, R.M. (1986) The effects of selected inhibitors on cellulose microfibril assembly inBoergesenia forbesii (Chlorophyta) protoplasts. J. Phycol.22, 224–233

    Google Scholar 

  • Jacob, S.R., Northcote, D.H. (1985) In vitro glucan synthesis by membranes of celery petioles: the role of the membrane in determining the type of linkage formed. J. Cell Sci. Suppl.2, 1–11

    Google Scholar 

  • Joly, R.J., Zaerr, J.B. (1987) Alteration of cell-wall water content and elasticity in Douglas-fir during periods of water deficit. Plant Physiol.83, 418–422

    Google Scholar 

  • Lin, F.-C., Brown, R.M., Cooper, J.B., Delmer, D.P. (1985) Synthesis of fibrils in vitro by a solubilized cellulose synthase fromAcetobacter xylinum. Science230, 822–825

    Google Scholar 

  • Loomis, W.F. (1975)Dictyostelium discoideum: a developmental system. Academic Press, New York

    Google Scholar 

  • Loomis, W.F., Thomas, S.R. (1976) Kinetic analysis of biochemical differentiation inDictyostelium discoideum. J. Biol. Chem.251, 6252–6258

    Google Scholar 

  • Markwell, M.A., Haas, S.M., Bieber, L.L., Tolbert, N.E. (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem.87, 206–210

    Google Scholar 

  • Mühlethaler, K. (1956) Electron microscopic study of the slime moldDictyostelium discoideum. Am. J. Bot.43, 673–678

    Google Scholar 

  • Nodet, P., Grange, J., Fèvre, M. (1988) Dot-blot assays and their use as a direct antigen-binding method to screen monoclonal antibodies to 1,4-β- and 1,3-β-glucan synthases. Anal. Biochem.174, 662–665

    Google Scholar 

  • Northcote, D.H. (1989) Control of plant cell wall biogenesis: an overview. In: Plant cell wall polymers : biogenesis and biodegradation, pp. 1–15, Lewis, N.G., Paice, M.G., eds. American Chemical Society Symposium Series 399

  • Olaitan, S.A., Northcote, D.H. (1962) Polysaccharides ofChlorella pyrenoidosa. Biochem. J.82, 509–519

    Google Scholar 

  • Philippi, M.L., Parish, R.W. (1981) Changes in glucan synthetase activity and plasma membrane proteins during encystment of the cellular slime moldPolysphondylium pallidum. Planta152, 59–69

    Google Scholar 

  • Potter, J.L., Weisman, R.A. (1971) Differentiation inAcanthamoeba: β-glucan synthesis during encystment. Biochim. Biophys. Acta237, 65–74

    Google Scholar 

  • Preston, R.D. (1974) The physical biology of plant cell walls. Chapman and Hall, London

    Google Scholar 

  • Raper, K.B. (1984) The dictyostelids. Princeton University Press, Princeton, N.J., USA

    Google Scholar 

  • Raper, K.B., Fennell, D.I. (1952) Stalk formation inDictyostelium. Bull. Torrey Bot. Club79, 25–51

    Google Scholar 

  • Roberts, E.M., Saxena, I.M., Brown, R.M. (1989) Does cellulose II occur in nature? In: Proc. Annu. Meeting Electron Microsc. Soc. America, pp. 780–781, Bailey, G.N., ed. San Francisco Press, San Francisco, Calif, USA

    Google Scholar 

  • Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., Braun, S., de Vroom, E., van der Marel, G.A., Van Boom, J.H., Benziman, M. (1987) Regulation of cellulose synthesis inAcetobacter xylinum by cyclic diguanylic acid. Nature325, 279–281

    Google Scholar 

  • Stone, B.A. (1984) Noncellulosic β-glucans in cell walls. In: Structure, function, and biosynthesis of plant cell walls, pp. 52–74, Dugger, W.M., Bartinicki-Garcia, S., eds. American Society of Plant Physiologists, Rockville, Md., USA

    Google Scholar 

  • Sussman, M. (1966) Biochemical and genetic methods in the study of cellular slime mold development. In: Methods in cell physiology, vol. 2, pp. 397–410, Prescott, D.M., ed. Academic Press, New York

    Google Scholar 

  • Sussman, M. (1972) The program of polysaccharide and disaccharide synthesis during the development ofDictyostelium discoideum. In: Biochemistry of the glycosidic linkage, pp. 431–448, Piras, R., Pontis, H.G., eds. Academic Press, New York

    Google Scholar 

  • Sussman, M., Sussman, R. (1969) Patterns of RNA synthesis and of enzyme accumulation and disappearance during cellular slime mould cytodifferentiation. Symp. Soc. Gen. Microbiol.19, 403–435

    Google Scholar 

  • Trevelyan, W.E., Procter, D.P., Harrison, J.S. (1950) Detection of sugars on paper chromatograms. Nature166, 44–445

    Google Scholar 

  • Ward, C., Wright, B.E. (1965) Cell-wall synthesis inDictyostelium discoideum. I. In vitro synthesis from uridine diphosphoglucose. Biochemistry4, 2021–2027

    Google Scholar 

  • Watts, D.J., Ashworth, J.M. (1970) Growth of myxamoebae of the cellular slime mouldDictyostelium discoideum in axenic culture. Biochem. J.119, 171–174

    Google Scholar 

  • Wood, P.J. (1980) Specificity in the interaction of direct dyes with polysaccharides. Carbohydr. Res.85, 271–288

    Google Scholar 

  • Wright, B.E., Dahlberg, D., Ward, C. (1968) Cell wall synthesis inDictyostelium discoideum. A model system for the synthesis of alkali-insoluble cell wall glycogen during differentiation. Arch. Biochem. Biophys.124, 380–385

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors thank Dr. R.R. Kay for provision of cultures and advice, Dr. P. Rubery for the loan of an environmental shaker, Mr. R. Davy for performing the methylation and gas-liquid chromatography analyses, Mr. M. Grimson for the sectioned vesicles and the shadowed stalk preparation, Dr. R. Shaw for provision of the non-linear regression computer program, and Dr. C.H. Haigler for helpful discussions and critical reading of the manuscript. R.L.B. also wishes to thank Messrs. R. Smyer and B. Harris for technical assistance. This paper is based in part upon research supported by the Texas Advanced Research Program under Grant No. 1388.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanton, R.L., Northcote, D.H. A 1,4-β-D-glucan-synthase system fromDictyostelium discoideum . Planta 180, 324–332 (1990). https://doi.org/10.1007/BF01160387

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01160387

Key words

Navigation