Skip to main content
Log in

Yb2O3-fluxed sintered silicon nitride

Part I Microstructure characterization

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microstructural development and crystallization behaviour of Yb2O3-fluxed sintered silicon nitride materials was investigated using CTEM and HREM. The materials contained 5 and 10 vol% Yb2O3 as sintering additives. After densification, both compositions were subsequently heat treated to crystallize the residual amorphous secondary phases present at triple-grain regions. In the material doped with 5 vol% Yb2O3, only an amorphous secondary phase was observed after sintering, which was about 80% crystalline (Yb2Si2O7) after the post-sintering heat treatment. A metastable phase was formed in the material with 10 vol% additives after sintering, with about 70% crystallinity in the triple-point pockets. Upon postsintering heat treatment, the material could be completely crystallized. During heat treating, the metastable phase combined with the remaining glass to form Yb2SiO5 plus Yb2Si2O7 and a small amount of Si3N4 which deposited epitaxially on pre-existing Si3N4 grains in areas of low-energy within the triple-point pockets. All materials contained thin amorphous films separating the grains. The amorphous intergranular films along grain boundaries (homophase boundaries) revealed excess ytterbium and oxygen. The thickness of the intergranular films was about 1.0 and 2.5 nm for the grain boundaries and the phase boundaries, respectively, independent of additive content and heat-treatment history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Anderson andR. J. Bratton, “Ceramics Materials for High Temperature Turbines”, Final Report, ERDA, AC-05-760-90405 (1977).

  2. F. L. Riley, “Progress in Nitrogen Ceramics”, in Proceedings of the NATO Advanced Study Institute on Nitrogen Ceramics, Brighton, 1981 (Martinus Nijhoff, 1983).

  3. J. J. Burke, E. N. Lenoe andR. N. Katz, “Ceramics for High Performance Applications”, Vols I–III (Brook Hill, Chestnut Hill, MA, 1974, 1977, 1980).

    Google Scholar 

  4. S. Somiya, E. Kanai andK. Ando, in “Proceedings of the 1st International Symposium on Ceramic Components for Engines” edited by F. L. Riley (KTK Scientific, Tokyo, 1983).

    Google Scholar 

  5. W. Bunk andM. Böhmer, “Keramische Komponenten für Fahrzeug-Gasturbinen”, Vols I–III (Springer, Berlin, 1977, 1980, 1984).

    Google Scholar 

  6. K. Kijima andS. Shirasaki,J. Chem. Phys. 65 (1976) 2668.

    Google Scholar 

  7. C. D. Greskovich, S. Prochazka andJ. H. Rosolowki, in “Nitrogen Ceramics”, edited by F. L. Riley (Nordhoff, Leyden, 1977) pp. 351–7.

    Google Scholar 

  8. M. Mitomo, M. Tsutsumi, E. Bannai andT. Tanaka,Amer. Ceram. Soc. Bull. 55 (1976) 313.

    Google Scholar 

  9. G. R. Terwilliger andF. F. Lange, US Pat. 3992 497 (1976).

  10. A. Giachello, P. C. Martinengo, G. Tommasini andP. Popper,J. Mater. Sci. 14 (1979) 2825.

    Google Scholar 

  11. A. Tsuge, K. Nishida andM. Komatsu,J. Amer. Ceram. Soc. 58 (1975) 323.

    Google Scholar 

  12. F. F. Lange,Amer. Ceram. Soc. Bull. 62 (1983) 1369.

    Google Scholar 

  13. G. N. Babini, A. Bellosi andP. Vincenzini,Ceram. Int. 6 (3) (1980) 91.

    Google Scholar 

  14. D. R. Clarke, F. F. Lange andG. D. Schnittgrund,J. Amer. Ceram. Soc. 65 (1982) C-51.

    Google Scholar 

  15. W. A. Sanders andD. M. Mieskowski,ibid. 64 (1985) 304.

    Google Scholar 

  16. L. A. Pierce, D. M. Mieskowski andW. A. Sanders,J. Mater. Sci. 21 (1986) 1345.

    Google Scholar 

  17. N. Hirosaki, A. Okada andK. Matoba,J. Amer. Ceram. Soc. 71 (1988) C-144.

    Google Scholar 

  18. R. W. Rice andW. J. McDonough,ibid. 58 (1975) 264.

    Google Scholar 

  19. H.-J. Kleebe, G. Wötting andG. Ziegler,Sci. Ceram. 14 (1987) 407.

    Google Scholar 

  20. L. K. L. Falk andM. Holmström, in “Euro-Ceramics 1”, edited by G. de With, R. A. Terpstra and R. Metselaar (Elsevier Applied Science, London, 1989) pp. 373–7.

    Google Scholar 

  21. J. R. Kim andC. H. Kim,J. Mater. Sci. 25 (1990) 493.

    Google Scholar 

  22. T. Ekström, L. K. L. Falk andE. M. Knutsonwedel,J. Mater. Sci. Lett. 9 (1990) 823.

    Google Scholar 

  23. G. R. Terwilliger,J. Amer. Ceram. Soc. 57 (1974) 48.

    Google Scholar 

  24. D. R. Clarke andG. Thomas,ibid. 61 (1978) 114.

    Google Scholar 

  25. R. E. Loehman andD. J. Rowcliffe,ibid. 6 (1980) 144.

    Google Scholar 

  26. R. K. Govila,J. Mater. Sci. 20 (1985) 4345.

    Google Scholar 

  27. E. Tani, M. Nishijima, H. Ichinose, K. Kishi andS. Umebayashi,Yogyo-Kyokai-Shi 94 (1986) 300.

    Google Scholar 

  28. L. K. L. Falk andG. Dunlop,J. Mater. Sci. 22 (1987) 4369.

    Google Scholar 

  29. M. K. Cinibulk, G. Thomas andS. M. Johnson,J. Amer. Ceram. Soc. 73 (1990) 1606.

    Google Scholar 

  30. D. A. Bonnell, T. Y. Tien andM. Rühle,ibid. 70 (1987) 460.

    Google Scholar 

  31. H. Schmid andM. Rühle,J. Mater. Sci. 19 (1984) 615.

    Google Scholar 

  32. D. R. Clarke,J. Amer. Ceram. Soc. 70 (1987) 15.

    Google Scholar 

  33. H.-J. Kleebe,J. Europ. Ceram. Soc. 10 (1991) 151.

    Google Scholar 

  34. D. R. Clarke,J. Amer. Ceram. Soc. 72 (1989) 1604.

    Google Scholar 

  35. R. L. Tsai andR. Raj,ibid. 63 (1980) 513.

    Google Scholar 

  36. R. Raj,J. Geophys. Rev. B 87 (1982) 4731.

    Google Scholar 

  37. E. Hampp, M. J. Hoffmann, H.-J. Kleebe, J. S. Vetrano andG. Schneider,J. Mater. Sci. (1993) submitted.

  38. E. Hampp, J. Gröbner, M. J. Hoffmann andG. Petzow, to be published.

  39. Z. K. Huang, P. Greil andG. Petzow,Ceram. Int. 10 (1984) 14.

    Google Scholar 

  40. W. Braue,Mater.-wiss. Werkstoff. 21 (1990) 72.

    Google Scholar 

  41. H.-J. Kleebe, W. Braue, W. Luxem andM. Rühle, in “Proceedings of 4th International Symposium on Ceramic Materials and Components for Engines”, Swedish Ceramic Society, 10–12 June 1991, Göteborg, Sweden.

    Google Scholar 

  42. H. Keßler, H.-J. Kleebe, R. W. Cannon andW. Pompe,Acta Metall. (1991) submitted.

  43. R. Raj andF. F. Lange,Acta Metall. 29 (1981) 1993.

    Google Scholar 

  44. D. A. Bonnell,Mater. Sci. Forum 47 (1989) 132.

    Google Scholar 

  45. R. R. Wills,J. Amer. Ceram. Soc. 58 (1975) 335.

    Google Scholar 

  46. J. S. Vetrano, H.-J. Kleebe, E. Hampp, M. J. Hoffmann andR. M. Cannon,J. Mater. Sci. Lett. 11 (1992) 1249.

    Google Scholar 

  47. D. R. Clarke,Ultramicroscopy 4 (1979) 33.

    Google Scholar 

  48. J. N. Ness, W. M. Stobbs andT. F. Page,Phil. Mag. A 54 (1986) 679.

    Google Scholar 

  49. O. L. Krivanek, T. M. Shaw andG. Thomas,J. Appl. Phys. 50 (1979) 4223.

    Google Scholar 

  50. H.-J. Kleebe, J. S. Vetrano, J. Bruley andM. Rühle, in “Proceedings of 49th Annual EMSA Meeting”, 4–9 August, San Jose, edited by G. W. Bailey (San Francisco Press, 1991) p. 930.

  51. F. F. Lange,J. Amer. Ceram. Soc. 63 (1980) 38.

    Google Scholar 

  52. J. K. Patel andD. P. Thompson,Brit. Ceram. Trans. J. 87 (1988) 70.

    Google Scholar 

  53. M. J. Hoffmann, E. Hampp, J. S. Vetrano, H.-J. Kleebe andG. Petzow, to be published.

  54. H.-J. Kleebe andM. K. Cinibulk J. Mater. Sci. Lett. 12 (1993) 70.

    Google Scholar 

  55. L. J. Gauckler, H. Hohnke andT. Y. Tien,J. Amer. Ceram. Soc. 63 (1980) 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetrano, J.S., Kleebe, H.J., Hampp, E. et al. Yb2O3-fluxed sintered silicon nitride. J Mater Sci 28, 3529–3538 (1993). https://doi.org/10.1007/BF01159834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01159834

Keywords

Navigation