Skip to main content
Log in

Fracture toughness behaviour of ferritic ductile cast iron

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The static rate fracture toughness of a series of eight heats of ductile cast iron has been measured. Samples from each heat were tested in a heat treated condition which produced a fully ferritic matrix. The dominant influence of carbide (primarily in e pearlitic form) in controling the fracture toughness was thus eliminated in this study. The chemical composition and the microstructural feature size has also been measured directly from each specimen tested. A multiple linear regression method was used to establish a simple mathematical relationship between fracture toughness and the composition and microstructure. Fracture toughness was found to be strongly associated with the spacing (or size) of the graphite nodules in these fully ferritic ductile cast irons. Other features, including the composition, the ferrite grain size, or the amount of graphite (over the ranges examined), did not strongly influence the fracture toughness. Fracture toughness also did not correlate with tensile properties (i.e. strength or ductility) in these alloys. The results of this work can be used to develop an appropriate quality control program for applications which require assurance against fracture toughness related failures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

YS :

0.2% offset yield strength (MPa)

UTS :

Ultimate tensile strength (MPa)

%El :

% tensile elongation

%RA :

% reduction in area

E :

Young's modulus (MPa)

J Ic :

Elastic-plastic fracture toughness (fromJ-integral test) (kJ m−2)

K Ic :

Linear-elastic fracture toughness, (MPa m1/2)

V v graphite :

Volume fraction graphite

d ferrite :

Ferrite grain size

N A :

Nodule count on a random plane (number mm−2)

D v :

Three-dimensional nodule diameter (mm)

λv :

Three-dimensional mean free nodule spacing (centre-to-centre) (mm)

D A :

Average nodule diameter on a random plane (“two-dimensional size”) (mm)

ΔA :

Average nearest neighbour spacing (centre-to-centre) on a random plane (“two-dimensional spacing”) (mm)

a tog :

Constants in the multiple linear regression analysis

References

  1. “Metals Handbook”, 9th edn Vol. I “Properties and Selection: Iron and Steels” (American Society for Metals, Metals Park, Ohio, 1978) pp. 33–56.

  2. C. F. Walton andT. J. Opar (eds) “Iron Castings Handbook” (Iron Castings Society, Inc., 1981) p. 121.

  3. A. H. Rauch, J. B. PeckandE. M. McCullough,AFS Transactions 67 (1959) 111.

    Google Scholar 

  4. J. Pelleg,Modern Castings 43 (1963) 108.

    Google Scholar 

  5. G. J. Cox,Foundry Trade Journal 28 (1974) 741.

    Google Scholar 

  6. O. Yanagisawa andT. S. Lui,Metallurgical Transactions A 16A (1985) 667.

    Google Scholar 

  7. H. Flemming andO. Liesenberg,Freiberg. Forschungsh. B 178 (1975) 73.

    Google Scholar 

  8. A. Fontaine andG. Zambelli,J. Mater. Sci. 20 (1985) 4139.

    Google Scholar 

  9. R. Salzbrenner,Sandia Report, SAND 86-0470 (Sandia National Laboratories, Albuquerque, New Mexico, 1985).

    Google Scholar 

  10. W. L. Bradley,J. Metals 37(1) (1985) 74.

    Google Scholar 

  11. N. Lazardis, R. K. Nanstad, F. J. Worzala andC. R. Loper Jr,Amer. Found. Soc. Trans. 85 (1977) 277.

    Google Scholar 

  12. R. K. Nanstad, F. J. Worzala andC. R. Loper Jr,Amer. Found. Soc. Trans. 83 (1975) 245.

    Google Scholar 

  13. E. Hornbogen,J. Mater. Sci. 20 (1985) 3897.

    Google Scholar 

  14. B. Ostensson,Scand. J. Metallurgy 2 (1973) 194.

    Google Scholar 

  15. R. Salzbrenner, J. A. van den Avyle, T. J. Lutz andW. L. Bradley, Proceedings of the Sixteenth Symposium on Fracture Mechanics, ASTM STP 868, edited by M. F. Kanninen and A. T. Hopper (American Society for Testing and Materials, Philadelphia, 1985) pp. 328–44.

    Google Scholar 

  16. W. L. Bradley andH. E. Mead Jr, Proceedings of AFS 84th Annual Meeting (American Foundation Society, Des Plaines, 1980) pp. 126.

    Google Scholar 

  17. J. Hwang, J. Doong andH. Chen,J. Mater. Sci. Lett. 2 (1983) 737.

    Google Scholar 

  18. F. J. Worzala, R. W. Heine andY. W. Cheng,Amer. Found. Soc. Trans. 82 (1976) 675.

    Google Scholar 

  19. F. J. Worzala, R. K. Nanstad andC. R. Loper Jr, Proceedings of 5th Conference on Dimensioning and Calculations, Budapest, 1974, pp. 265–276.

  20. H. J. Sheth andM. P. Dixit,Metall. Eng. 10 (1979) 18.

    Google Scholar 

  21. J. Motz, D. Berger, G. Cohry, G. Kuhn, H. Reuter, D. Schock, W. Shakeshaft andD. Wolters,Giessereiforschung 32 (1980) 97.

    Google Scholar 

  22. ASTM E-813, “Annual Book of ASTM Standards, Part 10, Metals Physical, Mechanical, Corrosion Testing” (American Society for Testing and Materials, Philadelphia, 1981) pp. 810–828.

    Google Scholar 

  23. J. A. Joyce andJ. P. Gudas, “Elastic-Plastic Fracture, ASTM STP 668”, edited by J. D. Landes, J. A. Begley and G. A. Clark (American Society for Testing and Materials, Philadelphia, 1979) pp. 451–468.

    Google Scholar 

  24. A. Le Douaron, R. Lafont, D. Poulain andC. Cloitre,AFR 1 (1978) 255.

    Google Scholar 

  25. S. R. Holdsworth andG. Jolley,British Foundrymen 67 (1974) 77.

    Google Scholar 

  26. Idem, in Proceedings of the Second International Symposium on the Metallurgy of Cast Iron, edited by B. Lux, I. Minkoff and F. Mollard, Geneva, 1974, (sponsored by Battelle Geneva Research Centre, Geneva, Switzerland) pp. 809–825.

    Google Scholar 

  27. G. Jolley andS. R. Holdsworth, “Fracture 1977” (University of Waterloo, Waterloo, Ontario, Canada, 1977) Vol. 12, pp. 403–13.

    Google Scholar 

  28. G. G. Chell andI. Milne, “Elastic-Plastic Fracture”, Vol. II: Fracture Resistance Curves and Engineering Applications, ASTM STP 803, edited by C. F. Shih and J. P. Gudas (American Society for Testing and Materials, Philadelphia, 1981) pp. 179–205.

    Google Scholar 

  29. Y. Xiao andG. Huang,Eng Fracture Mech. 16(1) (1984) 83.

    Google Scholar 

  30. S. I. Karsay, “Ductile Iron Production Practices” (American Foundation Society, Des Plaines, 1975) p. 148.

    Google Scholar 

  31. ASTM E-8, Annual Book of ASTM Standards, Part 10, Metals Physical, Mechanical, Corrosion Testing (American Society for Testing and Materials, Philadelphia, 1981) pp. 197–216.

    Google Scholar 

  32. E. E. Underwood, “Quantitative Microscopy”, edited by R. T. DeHoff and F. N. Rhines (McGraw-Hill, New York, 1968) pp. 151–200.

    Google Scholar 

  33. H. J. Rack andR. W. Newman, in “Physical Metallurgy”, edited by R. W. Cahn (North-Holland, London, 1970) pp. 705–86.

    Google Scholar 

  34. P. R. Bevington, “Data Reduction and Error Analysis for the Physical Sciences” (McGraw-Hill, New York, 1969).

    Google Scholar 

  35. J. R. Rice andD. M. Tracey,J. Mech. Phys. Solids 217 (1969) 201.

    Google Scholar 

  36. R. O. Ritchie, W. L. Server andR. A. Wullaert,Metall. Trans. A 10A (1979) 1557.

    Google Scholar 

  37. R. C. Bates, in “Metallurgical Treatises”, edited by J. K. Tien and J. F. Elliott (The Metallurgical Society of AIME, Warrendale, 1982) pp. 551–70.

    Google Scholar 

  38. R. O. Ritchie andA. W. Thompson,Metall. Trans. A 16A (1985) 233.

    Google Scholar 

  39. P. J. Pickards,J. Iron and Steel Institute 193 (1971) 190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salzbrenner, R. Fracture toughness behaviour of ferritic ductile cast iron. J Mater Sci 22, 2135–2147 (1987). https://doi.org/10.1007/BF01132950

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01132950

Keywords

Navigation