Skip to main content
Log in

A detailed analysis of pseudorotation in PH4F

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Pentacoordinated molecules are thought to undergo intramolecular isomerization by the widely accepted Berry pseudorotation mechanism. Through our investigations, we have found that the actual pseudorotation for the PH4F system is more complex than that envisioned by Berry. The potential energy surface of PH4F is mapped out at the RHF/6-311G(d, p) level. According to the Berry mechanism, this system is expected to have two minima and two maxima; however, the system actually has two transition states and one global minimum. The minimum energy path from the highest transition state is followed to the second transition state, which in turn has a minimum energy path leading to the global minimum. Along the path between the two transition states there is a branching region. This portion of the potential energy surface is probed extensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berry RS (1960) J Chem Phys 32:933

    Google Scholar 

  2. Mislow K (1970) Acc Chem Res 3:321

    Google Scholar 

  3. Gordon MS, Windus TL, Burggraf LW, Davis LP (1990) J Am Chem Soc 112:7167

    Google Scholar 

  4. Windus TL, Gordon MS, Burggraf LW, Davis LP, J Am Chem Soc 113:4346

  5. Deiters JA, Holmes RR (1990) J Am Chem Soc 112:7197

    Google Scholar 

  6. Magnusson E (1990) J Am Chem Soc 112:7940

    Google Scholar 

  7. Breidung J, Thiel W, Kormornicki A (1988) J Phys Chem 92:5603

    Google Scholar 

  8. Strich A, Veillard A (1973) J Am Chem Soc 95:5574

    Google Scholar 

  9. Keil F, Kutzelnigg W (1975) J Am Chem Soc 97:3623

    Google Scholar 

  10. McDowell RS, Streitwieser A Jr (1985) J Am Chem Soc 107:5849

    Google Scholar 

  11. Wang P, Zhang Y, Glaser R, Reed AE, Schleyer PvR, Streitwieser A (1991) J Am Chem Soc 113:55

    Google Scholar 

  12. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

    Google Scholar 

  13. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Google Scholar 

  14. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724

    Google Scholar 

  15. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213

    Google Scholar 

  16. Krishnan R, Binkley JS, Steeger R, Pople JA (1980) J Chem Phys 72:650

    Google Scholar 

  17. McLean AD, Chandler GS (1980) J Chem Phys 72:5639

    Google Scholar 

  18. Pople JA, Binkley JS, Seeger R (1976) Int J Quantum Chem S10:1

    Google Scholar 

  19. Baldridge KK, Gordon MS, Steckler R, Truhlar DG (1989) J Phys Chem 93:5107

    Google Scholar 

  20. Miller WH, Handy NC, Adams JE (1980) J Chem Phys 72:99

    Google Scholar 

  21. Boatz JA, Schmidt MW implemented in GAMESS in 1986. See [15]

  22. Schmidt MW, Baldridge KK, Boatz JA, Jensen JH, Koseki S, Gordon MS, Nguyen KA, Windus TL, Elbert ST (1990) QCPE Bull 10:52

    Google Scholar 

  23. Frisch MJ, Binkley JS, Schlegel HB, Raghavachari K, Melius CF, Martin RL, Stewart JJP, Bobrowicz FW, Rohlfing CM, Kahn LR, DeFrees DJ, Steeger R, Whiteside RA, Fox DJ, Fleuder EM, Pople JA Carnegie-Mellon Quantum Chemistry Publishing Unit Pittsburgh PA 15213

  24. Ugi I, Ramirez F (1972) Chem Br 8:198

    Google Scholar 

  25. Kutzelnigg W, Wasilewski J (1982) J Am Chem Soc 104:953

    Google Scholar 

  26. Wang P, Argafiotis DK, Streitwieser A, Schleyer PvR (1990) J Chem Soc, Chem Comm 201

  27. Hoffman DK, Nord RS, Ruedenberg K (1986) Theor Chim Acta 69:265

    Google Scholar 

  28. Valtazanos P, Ruedenberg K (1986) Theor Chim Acta 69:281

    Google Scholar 

  29. Kraus WA, DePristo AE (1986) Theor Chim Acta 69:309

    Google Scholar 

  30. Baker J, Gill PMW (1988) J Comp Chem 9:465

    Google Scholar 

  31. Shida N, Almlöf JE, Barbara PF (1989) Theor Chim Acta 76:7

    Google Scholar 

  32. One of the reviewers has noted that an alternative explanation is “that the BP's, being non-symmetric, follow neither the downhillB 2 orA 1 modes per se, but must first jump over a small region of hypersurface which is higher in energy. Depending on the PIP, this may be a small or a large first step.”

  33. Wilson EB, Jr., Decius JC, Cross PC (1955) Molecular Vibrations, McGraw-Hill, New York Toronto London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Klaus Ruedenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Windus, T.L., Gordon, M.S. A detailed analysis of pseudorotation in PH4F. Theoret. Chim. Acta 83, 21–30 (1992). https://doi.org/10.1007/BF01113241

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113241

Key words

Navigation