Skip to main content

Advertisement

Log in

Changes in local cerebral blood flow by neuroactivation and vasoactivation in patients with impaired cognitive function

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Imaging of local cerebral blood flow (ICBF) may serve as an important supplementary tool in the aetiological assessment of dementias. In early or preclinical disease, however, there are less characteristic changes in ICBF. In the present study it was investigated whether vasoactivation or neuroactivation may produce more pronounced local ICBF deficits. Local CBF was investigated by using technetium-99m hexamethylpropylene amine oxime and single-photon emission tomography (SPET) in 80 patients (50 with mild cognitive impairment and 30 with dementia of Alzheimer type (DAT), all without evidence of cerebrovascular disease) at rest (baseline) and during activation. In 31 studies patients underwent vasomotor activation with acetazolamide, while 62 studies were performed under cognitive challenge (neuroactivation by labyrinth task). Cortical activity relative to that of cerebellum increased significantly in a right temporal region and tended to increase in other cortical regions upon vasoactivation. In contrast, neuroactivation reduced cortical activity relative to that of cerebellum in several left and right temporal and in left parietal regions. Visual classification of SPET images of patients with probable DAT by three observers resulted in a reduction of the number of definitely abnormal patterns from 9/12 to 4/12 by vasoactivation and an increase from 10/18 to 15/18 by neuroactivation. Correspondingly, abnormal ratings in patients with mild cognitive dysfunction were reduced from 7/19 to 5/19 by vasoactivation and were increased from 12/2I to 18/21 by neuroactivation. In conclusion, vasoactivation does not enhance local relative perfusion deficits in patients with cognitive impairment of non-vascular aetiology, whereas neuroactivation by labyrinth task produces more pronounced local flow differences and enhances abnormal patterns in ICBF imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holman BL. Perfusion and receptor SPECT in the dementias – George Taplin Memorial Lecture.J Nucl Med 1986; 27: 855–860.

    PubMed  Google Scholar 

  2. Holman BL, Johnson KA, Gerada B, Carvalho PA, Satlin A. The scintigraphic appearance of Alzheimer's disease: a prospective study using technetium-99m-HMPAO SPECT.J Nucl Med 1992; 33: 181–185.

    PubMed  Google Scholar 

  3. Gemmell HG, Sharp PF, Besson JAO, Crawford JR, Ebmeier KP, Davidson J, Smith FW. Differential diagnosis in dementia using the cerebral blood flow agent Tc-99m HMPAO: a SPECT study.J Comput Assist Tomogr 1987; 11: 398–402.

    PubMed  Google Scholar 

  4. Burns A, Philpot MP, Costa DC, Ell PJ, Levy R. The investigation of Alzheimer's disease with single photon emission tomography.J Neurol Neurosurg Psychiatry 1989; 52: 248–253.

    PubMed  Google Scholar 

  5. Montaldi D, Brooks DN, McColl JH, Wyper D, Patterson J, Barron E, McCulloch J. Measurements of regional cerebral blood flow and cognitive performance in Alzheimer's disease.J Neurol Neurosurg Psychiatry 1990; 53: 33–38.

    PubMed  Google Scholar 

  6. Neary D, Snowden JS, Mann DMA, Northen B, Goulding PJ, MacDermott N. Frontal lobe dementia and motor neuron disease.J Neurol Neurosurg Psychiatry 1990; 53: 23–32.

    PubMed  Google Scholar 

  7. Johnson KA, Kijewski MF, Becker A, Garada B, Satlin A, Holman BL. Quantitative brain SPECT in Alzheimer's disease and normal aging.J Nucl Med 1993; 34: 2044–2048.

    PubMed  Google Scholar 

  8. Ryan DH. Misdiagnosis in dementia: comparisons of diagnostic error rate and range of hospital investigation according to medical speciality.Int J Geriatr Psychiatry 1994; 9: 141–147.

    Google Scholar 

  9. Hentschel F. Bildgebende Diagnostik bei dementiellen Erkrankungen.Klin Neuroradiol 1994; 4: 131–146.

    Google Scholar 

  10. Reed BR, Jagust WJ, Scab JP, Ober BA. Memory and regional cerebral blood flow in mildly symptomatic Alzheimer's disease.Neurology 1989; 39: 1537–1539.

    PubMed  Google Scholar 

  11. Folstein M, Folstein S, McHugh PR. Mini-mental state: a practical method for grading the cognitive state of patients for the clinician.J Psychiatr Res 1975; 12: 189–198.

    PubMed  Google Scholar 

  12. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease.Neurology 1984; 34: 939–944.

    PubMed  Google Scholar 

  13. Hachinski VC, Iliff LD, Zilkha E, DuBoulay GH, McAllister VL, Marshall J, Russel WR, Symon L. Cerebral blood flow in dementia.Arch Neurol 1975; 32: 632–637.

    PubMed  Google Scholar 

  14. Yesavage JA, Brink TL, Rose TL, Lum O, Huang V, Adez M, Leiter V. Development and validation of a geriatric depression screening scale: a preliminary report.J Psychiatr Res 1983; 17: 37–49.

    Google Scholar 

  15. Ostwald WD, Fleischmann VM.Der Labyrinthtest. In: Nürnberger Altersinventar Manual (NAI). Göttingen Bern Toronto: Hogrefe; 1995: 64–82.

    Google Scholar 

  16. Soundy RG, et al. The radiation dosimetry of Tc-99m-exametazime. Nucl Med Commun 1990; 11: 791–799.

    PubMed  Google Scholar 

  17. O'Mahony D, Coffey J, Murphy J, O'Hare N, Hamilton D, Freyne P, Bernard Walsh J, Coakley D. The discriminant value of semiquantitative SPECT data in mild Alzheimer's disease.J Nucl Med 1994; 35: 1450–1455.

    PubMed  Google Scholar 

  18. Pearson R, Powell T. The neuroanatomy of Alzheimer's disease.Rev Neurosci 1989; 2: 101–122.

    Google Scholar 

  19. Jobst KA, Smith AD, Shepstone BJ, et al. Ante mortem diagnosis of Alzheimer's disease using a combination of CT scan and SPET scan measures: a study with postmortem confirmation.Eur J Nucl Med 1992; 19: 616.

    Google Scholar 

  20. Habert MO, Spampinato U, Mas JL, et al. A comparative technetium 99m hexamethylpropylene amine oxime SPET study in different types of dementia.Eur J Nucl Med 1991; 18: 3–11.

    PubMed  Google Scholar 

  21. Perani D, DiPiero V, Vallar G, et al. Technetium-99mHMPAO-SPECT study of regional cerebral perfusion in early Alzheimer's disease.J Nucl Med 1988; 29: 1507–1514.

    PubMed  Google Scholar 

  22. Sharp P, Gemmell G, Cherryman G, Besson J, Crawford J. Application of iodine-123-labeled isopropylamphetamine imaging to the study of dementia.J Nucl Med 1986; 27: 761–768.

    PubMed  Google Scholar 

  23. Frackowiak RSJ, Herold S, Petty RK, Morgan-Hughes JA. The cerebral metabolism of glucose and oxygen measured with positron tomography in patients with mitochondrial diseases.Brain 1988; 111: 1009–1024.

    PubMed  Google Scholar 

  24. Neary D, Snowden JS, Shields RA, Burjan AWI, Northen B, MacDermott N, Prescott MC, Testa HJ. Single photon emission tomography using 99mTc-HMPAO in the investigation of dementia.J Neurol Neurosurg Psychiatry 1987; 50: 1101–1109.

    PubMed  Google Scholar 

  25. Elmstahl S, Siennicki-Lantz A, Bjunö L. A study of regional cerebral blood flow using Tc-99m-HMPAO SPECT in elderly women with senile dementia of Alzheimer's type.Dementia 1994; 5: 302–309.

    PubMed  Google Scholar 

  26. Battistin L, Pizzolato G, Dam M, Ponza I, Borsato N, Zanco PL, Ferlin G. Regional cerebral blood flow study with Tc99m-hexamethylpropyleneamine oxime single photon emis sion computed tomography in Alzheimer's and multi-infarct dementia.Eur Neurol 1990; 30: 296–301.

    PubMed  Google Scholar 

  27. Perlmutter JS, Powers WJ, Herscovitch P, Fox PT, Raichle ME. Standardized mean regional method for calculating global positron emission tomographic measurements.J. Cereb Blood Flow Metab 1985; 5: 476–480.

    PubMed  Google Scholar 

  28. Perlmutter JS, Powers WJ, Hersovitch P, Fox PT, Raichle ME. Regional asymmetries of cerebral blood flow, blood volume, and oxygen utilization and extraction in normal subjects.J Cereb Blood Flow Metab 1987; 7: 64–67.

    PubMed  Google Scholar 

  29. Englund E, Brun A, Alling C. White matter changes in dementia of Alzheimers type — biochemical and neuropathological correlates.Brain 1988; 111: 1425–1429.

    PubMed  Google Scholar 

  30. Janota I, Mirsen TR, Hachinski VC, Lee DH, Merskey H. Neuropathologic correlates of leuko-araiosis.Arch Neurol 1989; 46: 1124–1128.

    PubMed  Google Scholar 

  31. Scheibel AB, Duong T, Tomiyasu U. Denervation microangiopathy in senile dementia. Alzheimer type.Alzheimer Dis Assoc Disord 1987; 11: 19–37.

    Google Scholar 

  32. Johnson KA, Davis KR, Buonanno FS, Brady TJ, Rosen TJ, Growdon JH. Comparison of magnetic reasonance and roentgen ray computed tomography in dementia.Arch Neurol 1987; 44:1075–1080.

    PubMed  Google Scholar 

  33. Kozachuk WE, DeCarli C, Schapiro MB, Wagner EE, Rapoport SI, Horowitz B. White matter hyperintensities in dementia of Alzheimer's type and in healthy subjects without cerebrovascular risk factors. A magnetic resonance imaging study.Arch Neural 1990; 47: 1306–1310.

    Google Scholar 

  34. Schmidt R. Comparison of magnetic resonance imaging in Alzheimer's disease, vascular dementia and normal aging.Eur Neurol 1992; 32: 164–169.

    PubMed  Google Scholar 

  35. Knop J, Thie A, Fuchs C, Siepmann G, Zeumer H. Tc-99mHMPAO-SPECT with acetazolamide challenge to detect hemodynamic compromise in occlusive cerebrovascular disease.Stroke 1992; 23: 1733–1742.

    PubMed  Google Scholar 

  36. Sullivan HG, Kingsbury TB, Morgan ME, Jeffcoat RD, Allison JD, Goode JJ, McDonnell DE. The rCBF response to diamox in normal subjects and cerebrovascular disease patients.J Neurosurg 1987; 67: 525–534.

    PubMed  Google Scholar 

  37. Dahl A, Lindegaard KF, Russell D, Nyberg-Hansen R, Rootwelt K, Sorteberg W, Nornes H. A comparison of transcranial Doppler and cerebral blood flow study to assess cerebral vasoreactivity.Stroke 1992; 23: 15–19.

    PubMed  Google Scholar 

  38. Stoppe G, Schütze R, Kögler A, Staedt J, Munz D, Emrich D, Rüther E. Cerebrovascular reactivity to acetazolamide in (senile) dementia of Alzheimer's type: relationship to disease severity.Dementia 1995; 6: 73–82.

    PubMed  Google Scholar 

  39. Bonte FJ, Devous MD, Reisch JS, Ajmani AK, Weiner ME, Horn J, Tintner R. The effect of acetazolamide on regional cerebral blood flow in patients with Alzheimer's disease or stroke as measured by single-photon emission computed tomography.Invest Radiol 1989; 24: 99–103.

    PubMed  Google Scholar 

  40. Kuwabara Y, Ichiya Y, Otsuka M, Masuda K, Ichimiya H, Fujishima M. Cerebrovascular responsiveness to hypercapnia in Alzheimer's dementia and vascular dementia of the Binswanger type.Stroke 1992; 23: 594–598.

    PubMed  Google Scholar 

  41. Hachinski VC, Iliff LD, Phil M, Zilhka E, DuBoulay GH, McAllister VL, Marshall J, Russell RWR, Symon L. Cerebral blood flow in dementia.Arch Neurol 1975; 32: 632–637.

    PubMed  Google Scholar 

  42. Henn R, Krämer G, Knappertz VA. Vasomotor reactivity in dementia of Alzheimer type.Int J Geriatr Psychiatry 1994; 9: 913–918.

    Google Scholar 

  43. Fazekas F, Alavi A, Chawluk JB, et al. Comparison of CT, MR and PET in Alzheimer's dementia and normal aging.J Nucl Med 1989; 30: 1607–1615.

    PubMed  Google Scholar 

  44. Prohovnik G, Alexander E, Tatemichi TK, Mayeux R. Exploring the nature of the parietotemporal perfusion deficit in Alzheimer's disease.J Cereb Blood Flow Metab 1991; 11: 179.

    Google Scholar 

  45. Weinstein HC, van Gool WA, Hijdra A, van Royen EA. Effect of cerebral atrophy on semiquantitative analysis of SPECT in Alzheimer's disease.Eur J Nucl Med 1990; 16: 523.

    Google Scholar 

  46. Jobst KA, Smith AD, Barker CS, Wear A, King EM, Smith A, Anslow PA, Molyneux AJ, Shepstone BJ, Soper N, Holmes KA, Robinson JR, Hope RA, Oppenheimer C, Brockbank K, McDonald B. Association of atrophy of the medial temporal lobe with reduced blood flow in the posterior parietotemporal cortex in patients with a clinical and pathological diagnosis of Alzheimer' disease.J Neurol Neurosurg Psychiatry 1992; 55: 190–194.

    PubMed  Google Scholar 

  47. Lou HC, Edvinsson L, Mackenzie ET. The concept of coupling blood flow to brain function: Revision required?Ann Neurol 1987; 22: 289–297.

    PubMed  Google Scholar 

  48. Miller JD, DeLeon MJ, Ferris SH, Kluger A, George AE, Reisberg B, Sachs HJ, Wolf HP. Abnormal temporal lobe response in Alzheimer's disease during cognitive processing as measured by C-11-2-deoxy-d-glucose and PET.J Cereb Blood Flow Metab 1987; 7: 248–251.

    PubMed  Google Scholar 

  49. Buchsbaum MS, Kesslak JP, Lynch G, Chuii H, Wu J, Sicotte N, Hazlette E, Teng E, Cotman CW. Temporal hippocampal metabolic rate during an olfactory memory task assessed by positron emission tomography in patients with dementia of the Alzheimer's type and controls. Preliminary studies.Arch Gen Psychiatry 1991; 48: 840–847.

    PubMed  Google Scholar 

  50. Kessler J, Herholz K, Grond M, Heiss WD. Impaired metabolic activation in Alzheimer's disease. A PET study during continuous visual recognition.Neuropsychologia 1991; 29: 229–243.

    PubMed  Google Scholar 

  51. Frackowiak RSJ, Pozzilli C, Legg NJ. Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography.Brain 1981; 104: 753–778.

    PubMed  Google Scholar 

  52. Friedland RP, Budinger TF, Ganz E. Regional cerebral metabolic alterations in dementia of the Alzheimer's type: positron emission tomography with F-18 fluorodeoxyglucose.J Comput Assist Tomogr 1986; 7: 590–598.

    Google Scholar 

  53. Grünwald F, Horn R, Rieker O, Klemm E, Menzel C, Möller HJ, Biersack HJ. HMPAO-SPECT bei Demenz vom Alzheimer-Typ und Major Depression mit mnestischen Störungen.Nucl Med 1993; 32: 128–133.

    Google Scholar 

  54. Duara R, Barker W, Chang J, Yoshii F, Loewenstein DA, Pascal S. Viability of neocortical function shown in behavioral activation state PET studies in Alzheimer disease.J Cereb Blood Flow Metab 1992; 12: 927–934.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knapp, W.H., Dannenberg, C., Marschall, B. et al. Changes in local cerebral blood flow by neuroactivation and vasoactivation in patients with impaired cognitive function. Eur J Nucl Med 23, 878–888 (1996). https://doi.org/10.1007/BF01084360

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01084360

Key words

Navigation