Skip to main content

Quantification in Brain SPECT: Noninvasive Cerebral Blood Flow Measurements Using 99mTc-Labeled Tracers

  • Chapter
  • First Online:
PET and SPECT in Neurology
  • 1348 Accesses

Abstract

An absolute cerebral blood flow (CBF) measurement is necessary for detection of diffuse cerebral involvement and helpful for management of patients. Of the various measurement methods that have been employed in single photon emission computed tomography (SPECT), a noninvasive method using radionuclide angiography of 99mTc-labeled tracers has been widely used because of its simplicity without the need for any blood sampling. Brain perfusion index (BPI) is determined by graphical analysis of time activity curves for aortic arch and brain within 30 s immediately after bolus injection of the tracer. This BPI is converted to global CBF using a regression line equation between BPI and global CBF measured using 133Xe-SPECT. Then, regional CBF is calculated from global CBF, a linearization correction factor, and global mean SPECT counts. Obtained CBF values show good correlations with those obtained by other invasive methods with arterial blood sampling. This noninvasive technique has been applied to various neuropsychiatric diseases including cerebrovascular diseases, neurodegenerative disorders, and mood disorders for the early and differential diagnosis and objective evaluation of therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abumiya T, Katoh M, Moriwaki T et al (2014) Utility of early post-treatment single-photon emission computed tomography imaging to predict outcome in stroke patients treated with intravenous tissue plasminogen activator. J Stroke Cerebrovasc Dis 23:896–901

    Article  PubMed  Google Scholar 

  • Andersen AR, Friberg HH, Schmidt JF et al (1988) Quantitative measurements of cerebral blood flow using SPECT and [99mTc]-d,l-HM-PAO compared to xenon-133. J Cereb Blood Flow Metab 8:S69–S81

    Article  CAS  PubMed  Google Scholar 

  • Chang C-C, Asada H, Mimura T et al (2009) A prospective study of cerebral blood flow and cerebrovascular reactivity to acetazolamide in 162 patients with idiopathic normal-pressure hydrocephalus: clinical article. J Neurosurg 111:610–617

    Article  CAS  PubMed  Google Scholar 

  • Choi BR, Kim JS, Yang YJ et al (2006) Factors associated with decreased cerebral blood flow in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol 97:1365–1369

    Article  PubMed  Google Scholar 

  • Friberg L, Andersen AR, Lassen NA et al (1994) Retention of 99mTc-bicisate in the human brain after intracarotid injection. J Cereb Blood Flow Metab 14(Suppl 1):S19–S27

    CAS  PubMed  Google Scholar 

  • Fujimoto S, Toyoda K, Inoue T et al (2004) Diagnostic impact of transcranial color-coded real-time sonography with echo contrast agents for hyperperfusion syndrome after carotid endarterectomy. Stroke 35:1852–1856

    Article  PubMed  Google Scholar 

  • Garai I, Varga J, Szomj E et al (2002) Quantitative assessment of blood flow reserve using 99mTc-HMPAO in carotid stenosis. Eur J Nucl Med 29:216–220

    Article  CAS  Google Scholar 

  • Groiselle C, Rocchisani J-M, Moretti J-L (2000) Improving the measurement of the 99Tcm-ECD brain perfusion index by temporal analysis. Nucl Med Commun 21:811–816

    Article  CAS  PubMed  Google Scholar 

  • Hofman PAM, Stapert SZ, Van Kroonenburgh MJ et al (2001) MR imaging, single-photon emission CT, and neurocognitive performance after mild traumatic brain injury. AJNR Am J Neuroradiol 22:441–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honjo K, Ohshita T, Kawakami H et al (2004) Quantitative assessment of cerebral blood flow in genetically confirmed spinocerebellar ataxia type 6. Arch Neurol 61:933–937

    Article  PubMed  Google Scholar 

  • Hossain AKMM, Murata Y, Zhang L et al (2003) Brain perfusion SPECT in patients with corticobasal degeneration: analysis using statistical parametric mapping. Mov Disord 18:697–703

    Article  PubMed  Google Scholar 

  • Iida H, Itoh H, Nakazawa M et al (1994) Quantitative mapping of regional cerebral blood flow using iodine-123-IMP and SPECT. J Nucl Med 35:2019–2030

    CAS  PubMed  Google Scholar 

  • Iidaka T, Nakajima T, Suzuki Y et al (1997) Quantitative regional cerebral blood flow measured by Tc-99m HMPAO SPECT in mood disorder. Psychiatry Res 68:143–154

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Aoyagi J, Hanashiro S et al (2018) Preventive treatment with lomerizine increases cerebral blood flows during the interictal phase of migraine. J Stroke Cerebrovasc Dis 27:998–1002

    Article  PubMed  Google Scholar 

  • Imabayashi E, Yokoyama K, Tsukamoto T et al (2016) The cingulate island sign within early Alzheimer's disease-specific hypoperfusion volumes of interest is useful for differentiating Alzheimer's disease from dementia with Lewy bodies. EJNMMI Res 6:67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imasaka K, Yasaka M, Tayama E et al (2015) Obstructive carotid and/or intracranial artery disease rarely affects the incidence of haemodynamic ischaemic stroke during cardiac surgery: a study on brain perfusion single-photon emission computed tomography with acetazolamide. Eur J Cardiothorac Surg 48:739–746

    Article  PubMed  Google Scholar 

  • Imon Y, Matsuda H, Ogawa M et al (1999) SPECT image analysis using statistical parametric mapping in patients with Parkinson's disease. J Nucl Med 40:1583–1589

    CAS  PubMed  Google Scholar 

  • Inoue Y, Momose T, Ohtake T et al (1997) Effect of deadtime loss on quantitative measurement of cerebral blood flow with technetium-99m hexamethylpropylene amine oxime. Eur J Nucl Med 24:1418–1421

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi M, Kimura N, Aso Y et al (2018) Effects of white matter lesions on brain perfusion in patients with mild cognitive impairment. Clin Neurol Neurosurg 168:7–11

    Article  PubMed  Google Scholar 

  • Iwata T, Mori T, Tajiri H et al (2011) Predictors of hyperperfusion syndrome before and immediately after carotid artery stenting in single-photon emission computed tomography and transcranial color-coded real-time sonography studies. Neurosurgery 68:649–655

    Article  PubMed  Google Scholar 

  • Johnson B, Barron B, Fang B et al (1998a) Isradipine prevents global and regional cocaine-induced changes in brain blood flow: a preliminary study. Psychopharmacology 136:335–341

    Article  CAS  PubMed  Google Scholar 

  • Johnson B, Lamki L, Fang B et al (1998b) Demonstration of dose-dependent global and regional cocaine-induced reductions in brain blood flow using a novel approach to quantitative single photon emission computerized tomography. Neuropsychopharmacology 18:377–384

    Article  CAS  PubMed  Google Scholar 

  • Kamishirado H, Inoue T, Fujito T et al (1997) Effect of enalapril maleate on cerebral blood flow in patients with chronic heart failure. Angiology 48:707–713

    Article  CAS  PubMed  Google Scholar 

  • Káplár M, Paragh G, Erdei A et al (2009) Changes in cerebral blood flow detected by SPECT in type 1 and type 2 diabetic patients. J Nucl Med 50:1993–1998

    Article  PubMed  Google Scholar 

  • Kim M-S, Kim J-S, Yun S-C et al (2012) Association of cerebral blood flow with the development of cardiac death or urgent heart transplantation in patients with systolic heart failure. Eur Heart J 33:354–362

    Article  CAS  PubMed  Google Scholar 

  • Kimura N, Hanaki S, Masuda T et al (2011) Brain perfusion differences in parkinsonian disorders. Mov Disord 26:2530–2537

    Article  PubMed  Google Scholar 

  • Kimura N, Kumamoto T, Masuda T et al (2012) Evaluation of the regional cerebral blood flow changes during long-term donepezil therapy in patients with Alzheimer's disease using 3DSRT. J Neuroimaging 22:299–304

    Article  PubMed  Google Scholar 

  • Kinuya K, Kakuda K, Nobata K et al (2004) Role of brain perfusion single-photon emission tomography in traumatic head injury. Nucl Med Commun 25:333–337

    Article  PubMed  Google Scholar 

  • Kogure D, Matsuda H, Ohnishi T et al (2000) Longitudinal evaluation of early Alzheimer's disease using brain perfusion SPECT. J Nucl Med 41:1155–1162

    CAS  PubMed  Google Scholar 

  • Lassen NA, Andersen AR, Friberg L et al (1988) The retention of [99mTc]-d,l-HM-PAO in the human brain after intracarotid bolus injection: a kinetic analysis. J Cereb Blood Flow Metab 8:S13–S22

    Article  CAS  PubMed  Google Scholar 

  • Latchaw RE, Yonas H, Hunter GJ et al (2003) Guidelines and recommendations for perfusion imaging in cerebral ischemia: a scientific statement for healthcare professionals by the Writing Group on Perfusion Imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke 34:1084–1104

    Article  PubMed  Google Scholar 

  • Masunaga Y, Uchiyama Y, Ofuji A et al (2014) Development of an automatic ROI setting program for input function determination in 99mTc-ECD non-invasive cerebral blood flow quantification. Phys Med 30:513–520

    Article  PubMed  Google Scholar 

  • Matsuda H, Tsuji S, Shuke N et al (1992) A quantitative approach to technetium-99m hexamethylpropylene amine oxime. Eur J Nucl Med 19:195–200

    Article  CAS  PubMed  Google Scholar 

  • Matsuda H, Tsuji S, Shuke N et al (1993) Noninvasive measurements of regional cerebral blood flow using technetium-99m hexamethylpropylene amine oxime. Eur J Nucl Med 20:391–401

    Article  CAS  PubMed  Google Scholar 

  • Matsuda H, Yagishita A, Tsuji S et al (1995) A quantitative approach to technetium-99m ethyl cysteinate dimer: a comparison with technetium-99m hexamethylpropylene amine oxime. Eur J Nucl Med 22:633–637

    Article  CAS  PubMed  Google Scholar 

  • McKeith IG, Boeve BF, Dickson DW et al (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLBConsortium. Neurology 89:88–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Murase K, Inoue T, Fujioka H et al (1999) An alternative approach to estimation of the brain perfusion index for measurement of cerebral blood flow using technetium-99m compounds. Eur J Nucl Med 26:1333–1339

    Article  CAS  PubMed  Google Scholar 

  • Murase K, Fujioka H, Inoue T et al (2001) Reproducibility of the brain perfusion index for measuring cerebral blood flow using technetium-99m compounds. Eur J Nucl Med 28:1640–1646

    Article  CAS  PubMed  Google Scholar 

  • Nakabeppu Y, Nakajo M, Gushiken T et al (2001) Decreased perfusion of the bilateral thalami in patients with chronic pain detected by Tc-99m-ECD SPECT with statistical parametric mapping. Ann Nucl Med 15:459–463

    Article  CAS  PubMed  Google Scholar 

  • Nanri K, Okita M, Takeguchi M et al (2009) Intravenous immunoglobulin therapy for autoantibody-positive cerebellar ataxia. Intern Med 48:783–790

    Article  PubMed  Google Scholar 

  • Narita H, Odawara T, Iseki E et al (2004) Psychomotor retardation correlates with frontal hypoperfusion and the modified Stroop test in patients with major depression under 60-years-old. Psychiatry Clin Neurosci 58:389–395

    Article  PubMed  Google Scholar 

  • Nazir FS, Overell JR, Bolster A et al (2004) The effect of losartan on global and focal cerebral perfusion and on renal function in hypertensives in mild early ischaemic stroke. J Hypertens 22:989–995

    Article  CAS  PubMed  Google Scholar 

  • Nazir FS, Overell JR, Bolster A et al (2005) Effect of perindopril on cerebral and renal perfusion on normotensives in mild early ischaemic stroke: a randomized controlled trial. Cerebrovasc Dis 19:77–83

    Article  CAS  PubMed  Google Scholar 

  • Ohgami H, Nagayama H, Akiyoshi J et al (2005) Contributing factors to changes of cerebral blood flow in major depressive disorder. J Affect Disord 87:57–63

    Article  PubMed  Google Scholar 

  • Okada K, Suyama N, Oguro H et al (1999) Medication-induced hallucination and cerebral blood flow in Pfarkinson's disease. J Neurol 246:365–368

    Article  CAS  PubMed  Google Scholar 

  • Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    Article  CAS  PubMed  Google Scholar 

  • Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5:584–590

    Article  CAS  PubMed  Google Scholar 

  • Shiga Y, Tsuda T, Itoyama Y et al (2002) Transcranial magnetic stimulation alleviates truncal ataxia in spinocerebellar degeneration. J Neurol Neurosurg Psychiatry 72:124–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimosegawa E, Hatazawa J, Inugami A et al (1994) Cerebral infarction within six hours of onset: prediction of completed infarction with technetium-99m-HMPAO SPECT. J Nucl Med 35:1097–1103

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Oishi M, Ogawa K et al (2010) Atrophy of the parahippocampal gyrus and regional cerebral blood flow in the limbic system in chronic alcoholic patients. Alcohol 44:439–445

    Article  CAS  PubMed  Google Scholar 

  • Tabei KI, Kida H, Hosoya T et al (2017) Prediction of cognitive decline from white matter hyperintensity and single-photon emission computed tomography in Alzheimer's disease. Front Neurol 8:408

    Article  PubMed  PubMed Central  Google Scholar 

  • Takasawa M, Murase K, Oku N et al (2002) Assessment of acetazolamide reactivity in cerebral blood flow using spectral analysis and technetium-99m hexamethylpropylene amine oxime. J Cereb Blood Flow Metab 22:1004–1009

    Article  CAS  PubMed  Google Scholar 

  • Takasawa M, Murase K, Oku N et al (2003) Interobserver variability of cerebral blood flow measurements obtained using spectral analysis and technetium-99m labeled compounds. Ann Nucl Med 17:255–259

    Article  PubMed  Google Scholar 

  • Takasawa M, Murase K, Oku N et al (2004) Spectral analysis of 99mTc-HMPAO, for estimating cerebral blood flow: a comparison with H2 15O PET. Ann Nucl Med 18:243–249

    Article  PubMed  Google Scholar 

  • Takeuchi R, Matsuda H, Yonekura Y et al (1997) Noninvasive quantitative measurements of regional cerebral blood flow using technetium-99m-L,L-ECD SPECT activated with acetazolamide: quantification analysis by equal-volume-split 99mTc-ECD consecutive SPECT method. J Cereb Blood Flow Metab 17:1020–1032

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi R, Yonekura Y, Matsuda H et al (2002) Usefulness of a three-dimensional stereotaxic ROI template on anatomically standardised 99mTc-ECD SPET. Eur J Nucl Med Mol Imaging 29:331–341

    Article  CAS  PubMed  Google Scholar 

  • Tamamoto F, Sumi Y, Nakanishi A et al (2000) Usefulness of cerebral blood flow (CBF) measurements to predict the functional outcome for rehabilitation in patients with cerebrovascular disease (CVD). Ann Nucl Med 14:47–52

    Article  CAS  PubMed  Google Scholar 

  • Tateno M, Kobayashi S, Shirasaka T et al (2008) Comparison of the usefulness of brain perfusion SPECT and MIBG myocardial scintigraphy for the diagnosis of dementia with Lewy bodies. Dement Geriatr Cogn Disord 26:453–457

    Article  PubMed  Google Scholar 

  • Tatsukawa H, Ishii K, Haranaka M et al (2005) Evaluation of average amount of cerebral blood flow measured by brain perfusion index in patients with neuropsychiatric systemic lupus erythematosus. Lupus 14:445–449

    Article  CAS  PubMed  Google Scholar 

  • Torigai T, Mase M, Ohno T et al (2013) Usefulness of dual and fully automated measurements of cerebral blood flow during balloon occlusion test of the internal carotid artery. J Stroke Cerebrovasc Dis 22:197–204

    Article  PubMed  Google Scholar 

  • Uezato A, Yamamoto N, Kurumaji A et al (2012) Improvement of asymmetrical temporal blood flow in refractory oral somatic delusion after successful electroconvulsive therapy. J ECT 28:50–51

    Article  PubMed  Google Scholar 

  • Umemura A, Suzuka T, Yamada K (2000) Quantitative measurement of cerebral blood flow by 99mTc-HMPAO SPECT in acute ischaemic stroke: usefulness in determining therapeutic options. J Neurol Neurosurg Psychiatry 69:472–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umezaki Y, Katagiri A, Watanabe M et al (2013) Brain perfusion asymmetry in patients with oral somatic delusions. Eur Arch Psychiatry Clin Neurosci 263:315–323

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Laere K, Van de Wiele C, Van Belle Y, et al (1999) Variability study of a non-invasive approach to the absolute quantification of cerebral blood flow with 99mTc-ECD using aortic activity as the arterial input estimate. Nucl Med Commun 20:33–40

    Google Scholar 

  • Van Laere K, Dumont F, Koole M et al (2001) Non-invasive methods for absolute cerebral blood flow measurement using 99mTc-ECD: a study in healthy volunteers. Eur J Nucl Med 28:862–872

    Article  PubMed  Google Scholar 

  • Walters MR, Bolster A, Dyker AG et al (2001) Effect of perindopril on cerebral and renal perfusion in stroke patients with carotid disease. Stroke 32:473–478

    Article  CAS  PubMed  Google Scholar 

  • Zaknun JJ, Leblhuber F, Schktanz H (2008) Value of cerebral blood flow quantification in the diagnosis of dementia. Nucl Med Commun 29:260–269

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Matsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsuda, H. (2021). Quantification in Brain SPECT: Noninvasive Cerebral Blood Flow Measurements Using 99mTc-Labeled Tracers. In: Dierckx, R.A.J.O., Otte, A., de Vries, E.F.J., van Waarde, A., Leenders, K.L. (eds) PET and SPECT in Neurology. Springer, Cham. https://doi.org/10.1007/978-3-030-53168-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53168-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53167-6

  • Online ISBN: 978-3-030-53168-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics