Skip to main content
Log in

Split-step fourier methods applied to model nonlinear refractive effects in optically thick media

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We describe and example the Beam Propagation Method (BPM) used to model and simulate nonlinear refractive and absorptive effects in materials with applications to optical limiting and switching. Various scenarios including laser-beam trapping and laser-beam division are investigated, in order to demonstrate the power of the BPM. A novel technique is also described for efficiently modelling the external far-field propagation from nonlinear media, including the propagation of non-Gaussian-shaped spatial profiles. The methods are finally combined with the phenomenon of nonlinear absorption to demonstrate enhanced power limiting in the presence of self-refraction. Optimal parameters for high-fluence power-limiting are subsequently discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Wood, A. Mott, E. Sharp: SPIE Proc.1692, 1692 (1992)

    Google Scholar 

  2. J. Hermann: Opt. Quantum Electron.19, 169 (1987)

    Google Scholar 

  3. M. Sheik-Bahae, A. Said, D. Hagan, M. Soileau, E.W. Van Stryland: Opt. Eng.30, 1228 (1991)

    Google Scholar 

  4. A. Said, K. Mansour, J. Young, M. Soileau: SPIE Proc.1105, 103, 1989

    Google Scholar 

  5. W. Williams, M. Soileau, E.W. Van Stryland: Opt. Commun.50, 256 (1984)

    Google Scholar 

  6. I. Khoo, R. Lindquist, R. Michael, R. Mansfield, P. Zhou, P. Lopreti: SPIE Proc.1307, 336 (1990)

    Google Scholar 

  7. H.-P. Nolting, R. März: J. Lightwave Technol.13, 216 (1995)

    Google Scholar 

  8. T. Okoshi, S. Kitazawa:Analysis methods for electromagnetic wave problems, ed. by E. Yamashita (Artech House, Boston 1990) p. 341

    Google Scholar 

  9. J. Van Roey, J. Van der Donk, P. Laggase: J. Opt. Soc. Am.71, 803 (1981)

    Google Scholar 

  10. M. Munowitz, D. Vezzetti: Opt. Commun.100, 43 (1993)

    Google Scholar 

  11. L. Thylen: Opt. Quantum Electron.15, 433 (1983)

    Google Scholar 

  12. U. Trutschel, M. Mann, F. Lederer, C. Wachter, A.D. Boardman: Appl. Phys. Lett.59, 1940 (1991)

    Google Scholar 

  13. M. Mann, U. Trutschel, F. Lederer, L. Leine, C. Wachter: J. Opt. Soc. Am.8, 1612 (1991)

    Google Scholar 

  14. D. Harter, M. Shand, Y. Band: J. Appl. Phys.56, 865 (1984)

    Google Scholar 

  15. G. Allan, D. Labergerie, S. Rychnovsky, T. Boggess, A. Smirl, L. Tutt: J. Phys. Chem.96, 631 (1992)

    Google Scholar 

  16. J. Perry, L. Khundkar, D. Coulter, J. D. Alverez, S. Marder, T. Wei, M. Sence, E.W. Van Stryland, D. Hagan:Organic Molecules for Nonlinear Optics and Photonics (Kluwer, Dordrecht 1991) p. 369

    Google Scholar 

  17. D. Feit, J. Fleck: Appl. Opt.17, 3990 (1978)

    Google Scholar 

  18. M. Sheik-Bahae, H. Kwok: IEEE J. QE-23, 1974 (1987)

    Google Scholar 

  19. P. Murphy, N. Gallagher: J. Opt. Soc. Am.73, 1130 (1983)

    Google Scholar 

  20. D. Weaire, B.S. Wherrett, D. Miller, S. Smith: Appl. Opt.4, 331 (1979)

    Google Scholar 

  21. D. Bailey, P. Swarztrauber: SIAM J. Sci. Comput.15, 1105 (1994)

    Google Scholar 

  22. S. Hughes, J. Burzler, B. Wherrett: J. Opt. Soc. Am. B (in press)

  23. P. Chapple, J. Staromlynska, R. McDuff: J. Opt. Soc. Am. B11, 975 (1994)

    Google Scholar 

  24. A. Snyder, L. Poladian, D. Mitchell: Opt. Lett.17, 267 (1992)

    Google Scholar 

  25. M. Sodha: Opt. Lett.19, 1110 (1994)

    Google Scholar 

  26. B. Gross, J. Manassah: Phys. Lett. A169, 371 (1992)

    Google Scholar 

  27. P. Ho, R. Alfano: Phys. Rev. A20, 2170 (1979)

    Google Scholar 

  28. T. Harvey, W. Ji, A. Kar, B. Wherrett: Opt. Lett.15, 408 (1990)

    Google Scholar 

  29. E.W. Van Stryland, H. Vanherzeele, M. Woodall, A. Smirl, S. Guha, T. Boggess: Opt. Eng.24, 613 (1985)

    Google Scholar 

  30. M. Joshi, S. Mishra, H. Rawat, S. C. Mehendale, K. C. Rustagi: Appl. Phys. Lett.62, 1763 (1993)

    Google Scholar 

  31. K. Reddy: Opt. Quantum Electron.19, 203 (1987)

    Google Scholar 

  32. J. Faure, J. Fouassier, D. Lougnot: In 27th Int'l Meeting Soc. Chem. Phys.18, 263 (1976)

    Google Scholar 

  33. D. Coulter, V. Miskowski, J. Perry, T. Wei, E.W. Van Stryland, D. Hagan: SPIE Proc.1105, 42 (1989)

    Google Scholar 

  34. T. Wei, D. Hagan, M. Sence, E.W. Van Stryland, J. Perry, D. Coulter: Appl. Phys. B54, 46 (1992)

    Google Scholar 

  35. E.W. Van Stryland, M. Sheik-Bahae, A. Said, D. Hagan: SPIE Proc.1852, 135 (1993)

    Google Scholar 

  36. S. Speiser, N. Shakkour: Appl. Phys. B38, 191 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burzler, J.M., Hughes, S. & Wherrett, B.S. Split-step fourier methods applied to model nonlinear refractive effects in optically thick media. Appl. Phys. B 62, 389–397 (1996). https://doi.org/10.1007/BF01081201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081201

PACS

Navigation