Skip to main content
Log in

Applications of a recirculatory stochastic pharmacokinetic model: Limitations of compartmental models

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

General equations for the time integral on [0, ∞) of the venous drug concentrationtime function after intravenous and oral drug administration are derived. A physiologically realistic stochastic recirculating model is applied in the derivations. The quotient of the intravenous drug dose and the integral on [0, ∞) of the resulting venous blood drug concentration function is equivalent to a summation of organ clearances only provided that drug elimination does not occur in the pulmonary system, and in general it is not equivalent to “total body clearance.” In general, mammillary compartmental models are not isomorphic with recirculating models. A necessary condition for isomorphism is that the pulmonary system be conservative toward the drug. Equations for the pulmonary “first-pass” effect derived via the compartmental analysis are invalid. A valid expression for the pulmonary “first-pass” effect is derived. General equations derived via compartmental analysis for the extent of hepatic metabolism and the hepatic “first-pass” effect are shown to be valid. A generally applicable expression for the advantage of close intraarterial drug administration is derived. The limitations of compartmental models for representing drug distribution and elimination are discussed, and the advantages of recirculating models are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Bassingthwaighte. Blood flow and diffusion through mammalian organs.Science 167:1347–1353 (1970).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. J. G. Wagner. Do you need a pharmacokinetic model and if so which one.J. Pharmacokin. Biopharm. 3:457–478 (1975).

    Article  CAS  Google Scholar 

  3. D. P. Vaughan and M. Dennis. Number of exponential terms describing the solution of anN-compartmental mammillary model-vanishing exponentials.J. Pharmacokin. Biopharm. (in press).

  4. L. Z. Benet and C.-W. N. Chiang. The use of deconvolution methods in pharmacokinetics. In abstracts of papers presented to the 13th National Meeting of the AphA Academy of Pharmaceutical Sciences, Chicago, November, Vol. 2, No. 2, 1972, pp. 169–171.

    Google Scholar 

  5. A. Resigno and G. Segre.Drug and Tracer Kinetics, Blaisdell, Waltham, Mass., 1966, p. 102.

    Google Scholar 

  6. D. P. Vaughan and M. Dennis. Mathematical basis of the “point-area” deconvolution method for determiningin vivo input functions.J. Pharm. Sci. 67:663–667 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. D. P. Vaughan and G. T. Tucker. General derivation of the ideal drug input required to achieve and maintain a constant plasma drug concentration: Theoretical application to lignocaine therapy.Eur. J. Clin. Pharmacol. 10:433–440 (1976).

    Article  CAS  PubMed  Google Scholar 

  8. D. P. Vaughan and A. Trainor. A general equation for the ratio of the areas below the blood or plasma concentration-time curves following intravenous and oral drug administration and its applications to inter-subject variations in drug elimination.Br. J. Clin. Pharmacol. 2:239–250 (1975).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. M. Gibaldi, R. N. Boyes, and S. Feldman. Influence of first-pass effect on availability of drugs on oral administration.J. Pharm. Sci. 60:1338–1340 (1971).

    Article  CAS  PubMed  Google Scholar 

  10. D. P. Vaughan. Estimation of biological availability after oral drug administration when the drug is eliminated by urinary excretion and metabolism.J. Pharm. Pharmacol. 27:458–461 (1975).

    Article  CAS  PubMed  Google Scholar 

  11. D. P. Vaughan. Model independent derivation of general equations for first-pass effect and extra hepatic drug elimination.Eur. J. Clin. Pharmacol. 11:57–64 (1977).

    Article  CAS  PubMed  Google Scholar 

  12. W. L. Chiou. Quantitation of hepatic and pulmonary first-pass effect and its applications in pharmacokinetic study.J. Pharmacokin. Biopharm. 3:193–201 (1975).

    Article  CAS  Google Scholar 

  13. M. Rowland, L. Z. Benet, and G. G. Graham. Clearance concepts in pharmacokinetics.J. Pharmacokin. Biopharm. 1:123–135 (1973).

    Article  CAS  Google Scholar 

  14. C. A. Keele and E. Neil.Samson Wright's Applied Physiology, 10th ed., Oxford University Press, London, 1961, p. 136.

    Google Scholar 

  15. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  16. K. B. Bischoff and R. L. Dedrick. Thiopental pharmacokinetics.J. Pharm. Sci. 57:1346–1357 (1968).

    Article  CAS  PubMed  Google Scholar 

  17. N. Benowitz, R. F. Forsyth, K. L. Melinon, and M. Rowland. Lidocaine disposition kinetics in monkey and man. II. Effect of haemorrage and sympathomimetic drug administration.Clin. Pharmacol. Ther. 16:99–109 (1974).

    CAS  PubMed  Google Scholar 

  18. R. L. Dedrick. Animal scale-up.J. Pharmacokin. Biopharm. 1:435–461 (1973).

    Article  CAS  Google Scholar 

  19. B. M. Brown.The Mathematical Theory of Linear Systems, Chapman and Hall, London, 1961.

    Google Scholar 

  20. D. S. Riggs.Control Theory and Physiological Feedback Mechanisms, Williams and Wilkins, Baltimore, 1970.

    Google Scholar 

  21. G. Doetsch.Guide to the Application of Laplace Transforms, Van Nostrand, London, 1961.

    Google Scholar 

  22. A. M. Krall.Stability Techniques for Continuous Linear Systems, Thomas Nelson, London, 1968.

    Google Scholar 

  23. D. P. Vaughan. A model-independent proof of Dost's law of corresponding areas.J. Pharmacokin. Biopharm. 5:271–276 (1977).

    Article  CAS  Google Scholar 

  24. J. L. Stephenson. Theory of transport in linear biological systems. I. Fundamental integral equation.Bull. Math. Biophys. 22:131–138 (1960).

    Google Scholar 

  25. K. L. Zierler. A critical comprehensive presentation of physiological knowledge and concepts. In W. F. Hamilton and P. Dow (eds.),Handbook of Physiology, Section 2:Circulation, Vol. 1, American Physiological Society, Washington D.C., 1962, pp. 585–615.

    Google Scholar 

  26. H. E. Hart. Analysis of tracer experiments. VIII. Integrodifferential equation treatment of partly accessible partly injectable multicompartment systems.Bull. Math. Biophys. 29:319–333 (1967).

    Article  CAS  PubMed  Google Scholar 

  27. C. Waterhouse and J. Keilson. Transfer times across the human body.Bull. Math. Biophys. 34:33–44 (1972).

    Article  CAS  PubMed  Google Scholar 

  28. E. Moller, J. F. McIntosh, and D. D. Van Slyke. Studies of urea excretion. II. Relationship between urine volume and the rate of urea excretion by normal adults.J. Clin. Invest. 6:427–434 (1929).

    Article  Google Scholar 

  29. N. Jolliffe and H. W. Smith. The excretion of urine in the dog. I. The urea and creatinine clearances on a mixed diet.Am. J. Physiol. 98:572–585 (1931).

    CAS  Google Scholar 

  30. D. Schachter, N. Freinkel, and I. L. Schwartz. Movement of inulin between plasma and interstitial fluid.Am. J. Physiol. 160:532–539 (1950).

    CAS  PubMed  Google Scholar 

  31. J. S. Robson, M. H. Ferguson, O. Olbrich, and C. P. Stewart. The determination of renal clearance of inulin in man.Q. J. Exp. Physiol. 35:111–117 (1949).

    Article  CAS  PubMed  Google Scholar 

  32. C. Brun, T. Hilden, and F. Raaschou. The significance of the difference in systemic arterial and venous plasma concentrations in renal clearance methods.J. Clin. Invest. 28:144–151 (1949).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. E. Bojesen. The function of the urinary tract as “dead space” in clearance experiments.Scand. J. Clin. Lab. Invest. 1:290–294 (1949).

    Article  Google Scholar 

  34. H. W. Smith.The Kidney Structure and Function in Health and Disease, Oxford University Press, New York, 1951, pp 62–75.

    Google Scholar 

  35. M. Rowland. Influence of route of administration on drug availability.J. Pharm. Sci. 61:70–74 (1972).

    Article  CAS  PubMed  Google Scholar 

  36. W. W. Eckman, C. S. Patlak, and J. D. Fenstermacher. A critical evaluation of the principles governing the advantages of intraarterial infusions.J. Pharmacokin. Biopharm. 2:257–285 (1974).

    Article  CAS  Google Scholar 

  37. D. J. Cutler. Scientific commentary: Linear systems analysis in pharmacokinetics.J. Pharmacokin. Biopharm. 6:265–282 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaughan, D.P., Hope, I. Applications of a recirculatory stochastic pharmacokinetic model: Limitations of compartmental models. Journal of Pharmacokinetics and Biopharmaceutics 7, 207–225 (1979). https://doi.org/10.1007/BF01059739

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059739

Key words

Navigation