Skip to main content

A Closed-Loop Multiscale Model of the Cardiovascular System: Application to Heart Pacing and Open-Loop Response

  • Conference paper
  • First Online:
XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019 (MEDICON 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 76))

Abstract

A 1D description of the arterial tree is coupled to a lumped parameter model of the remaining circulatory system, resulting in a closed-loop multiscale model of the cardiovascular apparatus. The regulation of the arterial pressure is also implemented through a short-term baroreceptor model. The proposed framework reproduces well the physiological cardiovascular behaviour of an healthy young man and the modelled baroreflex mechanism is effective in adjusting the hemodynamic responses to both heart pacing and open-loop aortic-carotid sinus control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris, P.D., Narracott, A., von Tengg-Kobligk, H., Silva Soto, D.A., Hsiao, S., Lungu, A., Evans, P., Bressloff, N.W., Lawford, P.V., Hose, D.R., Gunn, J.P.: Computational fluid dynamics modelling in cardiovascular medicine. Heart 102, 18–28 (2016). https://doi.org/10.1136/heartjnl-2015-308044

    Article  Google Scholar 

  2. Shi, Y., Lawford, P., Hose, R.: Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Eng. Online 10, 33 (2011). https://doi.org/10.1186/1475-925X-10-33

    Article  Google Scholar 

  3. Liang, F., Takagi, S., Himeno, R., Liu, H.: Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Med. Biol. Eng. Comput. 47, 743–755 (2009). https://doi.org/10.1007/s11517-009-0449-9

    Article  Google Scholar 

  4. Liang, F.Y., Takagi, S., Himeno, R., Liu, H.: Biomechanical characterization of ventricular-arterial coupling during aging: a multi-scale model study. J. Biomech. 42, 692–704 (2009). https://doi.org/10.1016/j.jbiomech.2009.01.010

    Article  Google Scholar 

  5. Blanco, P.J., Trenhago, P.R., Fernandes, L.G., Feijóo, R.A.: On the integration of the baroreflex control mechanism in a heterogeneous model of the cardiovascular system. Int. J. Numer. Meth. Biomed. Engng. 28, 412–433 (2012). https://doi.org/10.1002/cnm.1474

    Article  MathSciNet  Google Scholar 

  6. Blanco, P.J., Feijóo, R.A.: A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications. Med. Eng. Phys. 35, 652–667 (2013). https://doi.org/10.1016/j.medengphy.2012.07.011

    Article  Google Scholar 

  7. Wayson, M.B., Leggett, R.W., Jokisch, D.W., Lee, C., Schwarz, B.C., Godwin, W.J., Bolch, W.E.: Suggested reference values for regional blood volumes in children and adolescents. Phys. Med. Biol. 63, 155022 (2018). https://doi.org/10.1088/1361-6560/aad313

    Article  Google Scholar 

  8. Guala, A., Camporeale, C., Tosello, F., Canuto, C., Ridolfi, L.: Modelling and subject-specific validation of the heart-arterial tree system. Ann. Biomed. Eng. 43, 222–237 (2015). https://doi.org/10.1007/s10439-014-1163-9

    Article  Google Scholar 

  9. Scarsoglio, S., Gallo, C., Ridolfi, L.: Effects of atrial fibrillation on the arterial fluid dynamics: a modelling perspective. Meccanica 53, 3251–3267 (2018). https://doi.org/10.1007/s11012-018-0867-6

    Article  MathSciNet  Google Scholar 

  10. Heldt, T., Shim, E.B., Kamm, R.D., Mark, R.G.: Computational modeling of cardiovascular response to orthostatic stress. J. Appl. Physiol. 92, 1239–1254 (2002). https://doi.org/10.1152/japplphysiol.00241.2001

    Article  Google Scholar 

  11. Korakianitis, T., Shi, Y.: Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J. Biomech. 39, 1964–1982 (2006). https://doi.org/10.1016/j.jbiomech.2005.06.016

    Article  Google Scholar 

  12. Ottesen, J., Olufsen, M., Larsen, J.: Applied Mathematical Models in Human Physiology. Society for Industrial and Applied Mathematics, Philadelphia (2004)

    Book  Google Scholar 

  13. Caro, C.G., Pedley, T.Y., Schroter, R.C., Seed, W.A.: The Mechanics of the Circulation, 2nd edn. Cambridge University Press, New York (2012)

    MATH  Google Scholar 

  14. Guyton, A., Hall, J.: Textbook of Medical Physiology, 11th edn. Elsevier Saunders, Philadelphia (2006)

    Google Scholar 

  15. Noble, M.I.M., Trenchord, D., Guz, A.: Effect of changing heart rate on cardiovascular function in the conscious dog. Circ. Res. 19, 206–213 (1966). https://doi.org/10.1161/01.RES.19.1.206

    Article  Google Scholar 

  16. Stein, E., Damato, A.N.: The relation of heart rate to cardiovascular dynamics. Circulation 33, 925–932 (1966). https://doi.org/10.1161/01.cir.33.6.925

    Article  Google Scholar 

  17. Miller, D.E., Gleason, W.L., Whalen, R.E., Morris, J.J., Mclntosh, H.D.: Effect of ventricular rate on the cardiac output in the dog with chronic heart block. Circ. Res. 10, 658–663 (1962). https://doi.org/10.1161/01.RES.10.4.658

    Article  Google Scholar 

  18. Berglund, E., Borst, H.G., Duff, F., Schreiner, G.L.: Effect of heart rate on cardiac work, myocardial oxygen consumption and coronary blood flow in the dog. Acta Physiol. 42, 185–198 (1958). https://doi.org/10.1111/j.1748-1716.1958.tb01551.x

    Article  Google Scholar 

  19. Bolter, C.P., Ledsome, J.R.: Effect of cervical sympathetic nerve stimulation on canine carotid sinus reflex. Am. J. Physiol. 230, 1026–1030 (1976). https://doi.org/10.1152/ajplegacy.1976.230.4.1026

    Article  Google Scholar 

  20. Cox, R.H., Bagshaw, R.J.: Baroreceptor reflex control of arterial hemodynamics in the dog. Circ. Res. 37, 772–786 (1975). https://doi.org/10.1161/01.RES.37.6.772

    Article  Google Scholar 

  21. Shoukas, A.A., Connoly-Brunner, M.: Epinephrine and the carotid sinus baroreceptor reflex. Circ. Res. 47, 249–257 (1980). https://doi.org/10.1161/01.RES.47.2.249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Gallo .

Editor information

Editors and Affiliations

Ethics declarations

Declaration of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gallo, C., Ridolfi, L., Scarsoglio, S. (2020). A Closed-Loop Multiscale Model of the Cardiovascular System: Application to Heart Pacing and Open-Loop Response. In: Henriques, J., Neves, N., de Carvalho, P. (eds) XV Mediterranean Conference on Medical and Biological Engineering and Computing – MEDICON 2019. MEDICON 2019. IFMBE Proceedings, vol 76. Springer, Cham. https://doi.org/10.1007/978-3-030-31635-8_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31635-8_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31634-1

  • Online ISBN: 978-3-030-31635-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics