Skip to main content
Log in

Electron transport-linked proton translocation at nitrite reduction inCampylobacter sputorum subspeciesbubulus

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Campylobacter sputorum subspeciesbubulus contains a membrane-bound nitrite reductase which catalyses the six-electron reduction of nitrite to ammonia. Formate andL-lactate are used as hydrogen donors. Cells ofC. sputorum grown with nitrate or nitrite contain cytochromes of theb-andc-type and a carbon monoxide-binding cytochromec. In addition, a special membrane-bound carbon monoxide-binding pigment is found. Nitrite reduction with formate orL-lactate as a hydrogen donor is strongly inhibited by 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Nitrite reduction by bacterial suspensions with lactate as a hydrogen donor is strongly inhibited by carbonylcyanide-m-chlorophenyl-hydrazone (CCCP) whereas nitrite reduction with formate as a hydrogen donor is not inhibited at all. →H+/O values and →H+/NO -2 values were measured with ascorbate + N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD), formate (in the absence and presence of carbonic anhydrase) andL-lactate as a hydrogen donor. The results are summarized in a scheme for electron transport from formate or lactate to oxygen or nitrite which shows a periplasmic orientation of formate dehydrogenase and nitrite reductase and a cytoplasmic orientation of lactate dehydrogenase and oxygen reduction, and which shows proton translocation with a →H+/2e value of 2.0. The →H+/O and →H+/NO -2 values predicted by this scheme are in good agreement with the experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCCP:

carbonylcyanide-m-chlorophenylhydrazone

HQNO:

2-n-heptyl-4-hydroxyquinoline-N-oxide

MTPP+ :

methyltriphenylphosphonium cation

TMPD:

N,N,N′,N′-tetramethyl-p-phenylenediamine; →H+/O (→H+/NO -2 ), number of protons liberated in the outer bulk phase at the reduction of one atom O (one ion NO -2 ); →H+/2e (→q+/2e), number of protons (charges) translocated across the cytoplasmic membrane during flow of two electrons to an acceptor

References

  • Abou-Jaoudé A, Chippaux M, Pascal M-C (1979a) Formate-nitrite reduction inEscherichia coli K12. 1. Physiological study of the system. Eur J Biochem 95:309–314

    PubMed  Google Scholar 

  • Abou-Jaoudé A, Pascal M-C, Chippaux M (1979b) Formate-nitrite reduction inEscherichia coli K12. 2. Identification of components involved in the electron transfer. Eur J Biochem 95:315–321

    PubMed  Google Scholar 

  • Boogerd FC, van Verseveld HW, Stouthamer AH (1981) Respiration driven proton translocation with nitrite and nitrous oxide inParacoccus denitrificans. Biochem Biophys Acta 638:181–191

    PubMed  Google Scholar 

  • Cole JA (1978) The rapid accumulation of large quantities of ammonia during nitrite reduction byEscherichia coli. FEMS Microbiol Lett 4:327–329

    Google Scholar 

  • Cole JA, Brown CM (1980) Nitrite reduction to ammonia by fermentative bacteria: a short circuit in the biological nitrogen cycle. FEMS Microbiol Lett 7:65–72

    Google Scholar 

  • Garland PB, Downie JA, Haddock BA (1975) Proton translocation and the respiratory nitrate reductase ofEscherichia coli. Biochem J 152:547–559

    PubMed  Google Scholar 

  • Haddock BA, Jones CW (1977) Bacterial respiration. Bacteriol Rev 41:47–99

    PubMed  Google Scholar 

  • Hadjipetrou LP, Stouthamer AH (1965) Energy production during nitrate reduction byAerobacter aerogene. J Gen Microbiol 38:29–34

    PubMed  Google Scholar 

  • Hasan SM, Hall JB (1975) The physiological function of nitrate reduction inClostridium perfringens. J Gen Microbiol 87:120–128

    PubMed  Google Scholar 

  • Inderlied CB, Delwiche EA (1973) Nitrate reduction and the growth ofVeillonella alcalescens. J Bacteriol 114:1206–1212

    PubMed  Google Scholar 

  • Kemp JD, Atkinson DE (1966) Nitrite reductase ofEscherichia coli specific for reduced nicotinamide adenine dinucleotide. J Bacteriol 92:628–634

    PubMed  Google Scholar 

  • Kröger A, Innerhöfer A (1976) The function of the b cytochromes in the electron transport from formate to fumarate ofVibrio succinogenes. Eur J Biochem 69:497–506

    Google Scholar 

  • Kröger A, Dorrer E, Winkler E (1980) The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane ofVibrio succinogenes. Biochim Biophys Acta 589:118–136

    PubMed  Google Scholar 

  • Kröger A (1977) Phosphorylative electron transport with fumarate and nitrate as terminal hydrogen acceptors. In: BA Haddock, WA Hamilton (eds) Microbiol energetics. University Press, Cambridge, pp 61–93

    Google Scholar 

  • Laanbroek HJ, Veldkamp H (1979) Growth yield and energy generation in anaerobically-grownCampylobacter spec. Arch Microbiol 120:47–51

    PubMed  Google Scholar 

  • Lam Y, Nicholas DJD (1969) Aerobic and anaerobic respiration inMicrococcus denitrificans. Biochim Biophys Acta 172:450–461

    PubMed  Google Scholar 

  • LeGall J, Payne WJ, Vance Morgan T, Dervartanian DV (1979) On the purification of nitrite reductase fromThiobacillus denitrificans and its reaction with nitrite under reducing conditions. Biochem Biophys Res Commun 87:355–362

    PubMed  Google Scholar 

  • Liu MC, Peck HD, Abou-Jaoudé A, Chippaux M, LeGall J (1981) A reappraisal of the role of the low potential c-type cytochrome (cytochrome c-552) in NADH-dependent nitrite reduction and its relationship with a co-purified NADH oxidase inEscherichia coli K12. FEMS Microbiol Lett 10:333–337

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  • Meijer EM, van Verseveld HW, van der Beek EG, Stouthamer AH (1977) Energy conservation during aerobic growth inParacoccus denitrificans. Arch Microbiol 112:25–34

    PubMed  Google Scholar 

  • Meijer EM, van der Zwaan JW, Wever R, Stouthamer AH (1979a) Anaerobic respiration and energy conservation inParacoccus denitrificans. Functioning of iron-sulfur centers and the uncoupling effect of nitrite. Eur J Biochem 96:69–76

    PubMed  Google Scholar 

  • Meijer EM, van der Zwaan JW, Stouthamer AH (1979b) Location of the proton-consuming site in nitrite reduction and stoichiometries for proton pumping in anaerobically grownParacoccus denitrificans. FEMS Microbiol Lett 5:369–372

    Google Scholar 

  • Mitchell P, Moyle J (1967) Respiration-driven proton translocation in rat liver mitochondria. Biochem J 105:1147–1162

    Google Scholar 

  • Newton N (1969) The two haem nitrite reductase ofMicrococcus denitrificans. Biochim Biophys Acta 185:316–331

    PubMed  Google Scholar 

  • Niederman RA, Wolin MJ (1972) Requirement of succinate for growth ofVibrio succinogenes. J Bacteriol 109:546–549

    PubMed  Google Scholar 

  • Niekus HGD, de Vries W, Stouthamer AH (1977) The effect of different dissolved oxygen tensions on growth and enzyme activities ofCampylobacter sputorum subspeciesbubulus. J Gen Microbiol 103:215–222

    PubMed  Google Scholar 

  • Niekus HGD, van Doorn E, de Vries W, Stouthamer AH (1980a) Aerobic growth ofCampylobacter sputorum subspeciesbubulus with formate. J Gen Microbiol 118:419–428

    Google Scholar 

  • Niekus HGD, van Doorn E, Stouthamer AH (1980b) Oxygen consumption byCampylobacter sputorum subspeciesbubulus with formate as a substrate. Arch Microbiol 127:137–143

    PubMed  Google Scholar 

  • Niekus HGD, Stouthamer AH (1981) Formate oxidase in glutaraldehyde-treatedCampylobacter sputorum subspeciesbubulus. FEMS Microbiol Lett 11:83–87

    Google Scholar 

  • Prakash O, Sadana JC (1972) Purification, characterization and properties of nitrite reductase ofAchromobacter fischeri. Arch Biochem Biophys 148:614–632

    PubMed  Google Scholar 

  • Scholes PB, Smith L (1968) Composition and properties of the membrane-bound respiratory chain ofMicrococcus denitrificans. Biochim Biophys Acta 153:363–375

    PubMed  Google Scholar 

  • Scholes PB, Mitchell P (1970) Respiration-driven proton translocation inMicrococcus denitrificans. J Bioenerg 1:309–323

    Google Scholar 

  • Skirrow G (1965) The dissolved gases-carbon dioxide. In: JP Riley, G Skirrow (eds) Chemical oceanography, Vol I. Academic Press, London, p 227

    Google Scholar 

  • Steenkamp DJ, Peck HD (1980) The association of hydrogenase and dithionite reductase activities with the nitrite reductase ofDesulfovibrio desulfuricans. Biochem Biophys Res Commun 94:41–48

    PubMed  Google Scholar 

  • Steenkamp DJ, Peck HD (1981) Proton translocation associated with nitrite respiration inDesulfovibrio desulfuricans. J Biol Chem 256:5450–5458

    PubMed  Google Scholar 

  • Stouthamer AH, de Vries W, Niekus HGD (1979) Microaerophily. Antonie van Leeuwenhoek. Z Microbiol Serol 45:5–12

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  Google Scholar 

  • van Verseveld HW, Krab K, Stouthamer AH (1981) Proton pump coupled to cytochrome c oxidase inParacoccus denitrificans. Biochim Biophys Acta 635:525–534

    PubMed  Google Scholar 

  • de Vries W, Niekus HGD, Boellaard M, Stouthamer AH (1980) Growth yields and energy generation byCampylobacter sputorum subspeciesbubulus during growth in continuous culture with different hydrogen acceptors. Arch Microbiol 124:221–227

    PubMed  Google Scholar 

  • Wikström MKF, Krab K (1979) Proton-pumping cytochrome c oxidase. Biochim Biophys Acta 549:177–222

    PubMed  Google Scholar 

  • Yamanaka T, Akihiro O, Okunuki K (1960) Nitrite reductase activity inPseudomonas cytochrome oxidase. Biochim Biophys Acta 44:397–398

    PubMed  Google Scholar 

  • Yordy DN, Delwiche EA (1979) Nitrite reduction inVeillonella alcalescens. J Bacteriol 137:905–911

    PubMed  Google Scholar 

  • Yoshinari T (1980) N2O reduction byVibrio succinogenes. Appl Environm Microbiol 39:81–84

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vries, W., Niekus, H.G.D., van Berchum, H. et al. Electron transport-linked proton translocation at nitrite reduction inCampylobacter sputorum subspeciesbubulus . Arch. Microbiol. 131, 132–139 (1982). https://doi.org/10.1007/BF01053995

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053995

Key words

Navigation