Skip to main content
Log in

Hyperfine fields and neutron scattering in ferromagnetic metals

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The origin of ferromagnetism in the transition metal ferromagnets, iron, cobalt, and nickel is discussed, from an ab initio band structure point of view, with proper attention to the explicit roles of exchange, correlation and hybridization effects. The influence of these effects and all the mechanisms such as direct, exchange core polarization and many-body effects that have been found important for the hyperfine properties of atomic systems are included in attempting to understand the experimentally observed hyperfine fields at the nuclei in these metals. Spin-density distributions using calculated spin polarized band wave-functions are used to make comparisons with experimental neutron scattering data. The impact of the results of analyses of hyperfine fields at the nuclei and spin density distributions on the origin of hyperfine fields at muon sites is discussed.

This talk, and the corresponding article for the proceedings of this conference, will deal with the theoretical understanding of the hyperfine fields at the nuclei and neutron scattering form factors in the three ferromagnetic metals, iron, cobalt and nickel and the impact of this understanding on that of the origin of the hyperfine fields at positive muon sites in these metals. With these aims in mind, the plan of my talk will be the following.

  1. a)

    Discussion of a first-principle principle procedure to obtain the energy bands and electronic wave-functions in these metals and the understanding of the origin of their ferromagnetism from a band point of view.

  2. b)

    Mechanisms contributing to hyperfine fields in atomic systems and their relevance for ferromagnetic metals.

  3. c)

    The mechanisms for the origin of hyperfine fields in these metals, corresponding theoretical results and comparison with experiment.

  4. d)

    Comparison between calculated spin-density distributions and experimental results from neutron scattering data.

  5. e)

    Remarks on the origin of hyperfine fields at muon sites in these metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Hanna, et al., Phys. Rev. Lett.4, 177 (1960);4, 513 (1960); J. I. Budnick et al, J. App. Phys.32, 1209 (1961).

    Google Scholar 

  2. A. M. Portis and A. C. Gossard, J. Appl. Phys.31, 205s (1960). See also M. Kawakami et al., J. Phys. Soc. (Japan)33, 1591 (1972) and earlier references therein.

  3. The NMR frequency for61Ni in ferromagnetic nickel was measured by J. I. Budnick and collaborators in Phys. Rev.121, 83 (1961). The correct hyperfine field using the most recent value of the magnetic moment of61Ni is given in M. B. Stearns Phys. Rev.B8 4383 (1973) and D. A. Shirley, S. S. Rosenblum and E. Matthias, Phys. Rev.170, 363 (1965).

    Google Scholar 

  4. J. W. D. Connolly, Intern. J. Quantum Chem.2, 5257 (1968) (Iron); Phys. Rev.159, 415 (1967) (Nickel).

    Google Scholar 

  5. S. Wakoh and J. Yamashita, J. Phys. Soc. (Japan),21, 1712 (1966) (Iron);

    Google Scholar 

  6. S. Wakoh, J. Phys. Soc. (Japan),20, 1894 (1965) (Nickel).

    Google Scholar 

  7. See C. S. Wang and J. Callaway, Phys. Rev.,B, 15, 298 (1977) (Nickel) and references therein.

    Google Scholar 

  8. K. J. Duff and T. P. Das, Phys. Rev.B 3, 192 (1971).

    Google Scholar 

  9. C. M. Singal and T. P. Das, Phys. rev.B 16, 5068 (1977).

    Google Scholar 

  10. N. C. Mohapatra, Ph. D. thesis, State University of New York at Albany (1976), (unpublished); N. C. Mohapatra and T. P. Das (to be published).

  11. J. C. Slater, T. M. Wilson and J. H. Wood, Phys. Rev.179, 28 (1969); W. Kohn and L. J. Sham, Phys. Rev.140, A1133 (1965).

    Google Scholar 

  12. E. S. Chang, R. T. Pu and T. P. Das, Phys. Rev.174, 16 (1968); C. Matsubara, et al., Phys. Rev.Al, 561, (1970).

    Google Scholar 

  13. C. M. Singal and T. P. Das, Phys. Rev.B 8, 3675 (1973)B12, 795 (1975).

    Google Scholar 

  14. H. Kelly and A. Ron, Phys. Rev.A 4, 11 (1971).

    Google Scholar 

  15. J. Hubbard, Proc. Roy. Soc. (London),A 276, 238 (1963);A277, 237 (1963);A281, 401 (1964); J Kanamori, Prog. Theo. Phys. (Kyoto)30 275 (1963).

    Google Scholar 

  16. T. P. Das,Relativistic Quantum Mechanics of Electrons, (Harper and Row, New York (1973), Chaps. V, and VII.

    Google Scholar 

  17. G. D. Gaspari, W. M. Shyu and T. P. Das, Phys. Rev.134, A852 (1964).

    Google Scholar 

  18. R. E. Watson and A. J. Freeman inHyperfine Interactions, ed. A. J. Freeman and R. B. Fraenkel (Academic Press, New York 1971).

    Google Scholar 

  19. As an example of the non-relativistic many-body procedure in atomic hyperfine calculations, see T. Lee, N. C. Dutta and T. P. Das, Phys. Rev.A 1, 995 (1970). For the relativistic counterpart of this procedure, see J. Andriessen, K. Raghunathan, S. N. Ray and T. P. Das, Phys. RevB15, 2533 (1977).

    Google Scholar 

  20. S. S. Hanna, et al., Ref..

    Google Scholar 

  21. J. I. Budnick et al., Ref. 1..

    Google Scholar 

  22. M. Kawakami et al., Ref. 1, J. Appl. Phys.31, 205s (1960).

  23. M. Kawakami et al., Ref. 2., J. Appl. Phys.31, 205s (1960).

  24. K. J. Duff and T. P. Das, Phys. Rev.B 3, 2294(1971);B12, 3870 (1975);

    Google Scholar 

  25. C. M. Singal, B. Krawchuk and T. P. Das, Phys. Rev.B 16, 5108 (1977);

    Google Scholar 

  26. N. C. Mohapatra, Ref. 9. Ph. D. thesis, State University of New York at Albany (1976), (unpublished);

  27. C. G. Shull and Y. Yamada, J. Phys. Soc. (Japan) Suppl.17, (1962);

  28. C. G. Shull and H. A. Mook, Phys. Rev. Lett.16, 184 (1965);

    Google Scholar 

  29. R. M. Moon, Phys. Rev.136, A195 (1964);

    Google Scholar 

  30. H. A. Mook, Phys. Rev.148, 495 (1966).

    Google Scholar 

  31. K. J. Duff and T. P. Das, Phys. Rev.B 3, 2294 (1971) (iron); C. M. Singal, Ph.D. thesis, State University of New York at Albany (1975) (unpublished), (cobalt); N. C. Mohapatra, Ref. 9 (Nickel).

    Google Scholar 

  32. M. L. G. Foy et al., Phys. Rev. Lett.30 1964 (1973); I. I. Gurevich et al., Soviet Phys. JETP42, 222 (1976); H. Graf et al., Helv. Phys. Acta.49, 730 (1976); N. Nishida et al. Solid State Comm.22, 235 (1977).

    Google Scholar 

  33. I. I, Gurevich et al., Soviet Phys. JETP quoted under (a); H. Graf et al. Phys. Rev. Lett.37, 1644 (1976); N. Nishida et al, Hyperfine Interactions4, 318 (1978).

  34. M. L. G. Foy et al., quoted under (a); B. D. Patterson et al. Phys. Rev. Lett.46A 453 (1974); I. I. Gurevich et al. quoted under (b); N. Nishida et al. quoted under (a); M. Camani et al. Phys. Lett.60A, 439 (1977).

  35. A. Schenck, Hyperfine Interactions4, 282 (1978).

    Google Scholar 

  36. B. D. Patterson and L. M. Falicov, Solid State Comm.15, 1509 (1974).

    Google Scholar 

  37. P. F. Meier, Solid State Comm.17, 987 (1975);

    Google Scholar 

  38. P. Jena, Solid State Comm.19, 45 (1976);

    Google Scholar 

  39. K. G. Petzinger and R. Munjal, Phys. Rev.B 15, 1560 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by U. S. National Science Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, T.P. Hyperfine fields and neutron scattering in ferromagnetic metals. Hyperfine Interact 6, 53–62 (1979). https://doi.org/10.1007/BF01028769

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01028769

Keywords

Navigation