Skip to main content
Log in

Comparative e.m.f. study of CaF2 and β-alumina cells with Ni/NiF2 and Fe/FeF2 or Cr/CrF2 electrodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The reliability of employing beta-alumina as electrolyte for fluorine potential measurement is examined by measuring the e.m.f.s of the galvanic cells with metal/metal fluoride electrodes and comparing with those obtained by using CaF2 as electrolyte under identical conditions. The results from both types of galvanic cell can be superimposed to give the following standard Gibbs energy of formation, ΔG 0f , of FeF2 and CrF2 over extended ranges of temperature:

$$\begin{gathered} \Delta G_f^0 (FeF_2 ) = - 702.0 + 0.125 20T (K) ( \pm 0.70) kJ mol^{ - 1} (506 - 1063K) \hfill \\ \Delta G_f^0 (CrF_2 ) = - 732.8 + 0.087 90T (K) ( \pm 0.64) kJ mol^{ - 1} (497 - 1063K) \hfill \\ \end{gathered} $$

The absence of significant temperature-dependent errors in both these measurements are verified by a third law treatment of the data yielding values of −716.8 and −777.4 kJ mol−1 for ΔH 0f.298 of FeF2 and CrF2, respectively.

The feasibility of using beta-alumina electrolyte cells for e.m.f. measurements on other metal/metal fluoride systems is discussed in the light of the existence of a useful potential domain of beta-alumina. High sodium potential in the electrode system can lead to sodium depletion. Likewise, low sodium potential may result in oxidation of the metals in the electrodes. Both these limiting factors are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Choudhury,J. Electrochem. Soc. 120 (1973) 1663.

    Google Scholar 

  2. T. L. Markin, R. J. Bones and V. J. Wheeler, in ‘Thermodynamics of Ceramic Systems’, Proceedings of British Ceramic Society, Vol. 8 (1967) p. 51.

  3. E. J. McIver and S. S. Teale, UKAEA Report AERE-4942 (1965).

  4. Yu. D. Tret'yakov and H. Schmalzried,Bern. Bunsenges Phys. Chem. 69 (1965) 213.

    Google Scholar 

  5. C. Mallika, O. M. Sreedharan and J. B. Gnanamoorthy,J. Less-Common Metals 95 (1983) 213.

    Google Scholar 

  6. C. Mallika, O. M. Sreedharan and M. S. Chandrasekharaiah,107 (1985) 203.

    Google Scholar 

  7. O. M. Sreedharan and C. Mallika,Mater. Phys. Chem. 14 (1986) 375.

    Google Scholar 

  8. O. M. Sreedharan, E. Athiappan, R. Pankajavalli and J. B. Gnanamoorthy,J. Less-Common Metals 68 (1979) 143.

    Google Scholar 

  9. W. H. Skelton and J. W. Patterson,31 (1973) 47.

    Google Scholar 

  10. W. J. Hamer, M. S. Malmberg and B. Rubin,J. Electrochem. Soc. 112 (1965) 750.

    Google Scholar 

  11. C. E. Wicks and F. E. Block, US Bureau of Mines Bulletin 605 (1965).

  12. E. Steimmetz and H. Roth,J. Less-Common Metals 16 (1968) 295.

    Google Scholar 

  13. O. M. Sreedharan, M. S. Chandrasekharaiah and M. D. Karkhanavala,High Temp. Sci. 9 (1977) 109.

    Google Scholar 

  14. A. M. Azad, O. M. Sreedharan and J. B. Gnanamoorthy,J. Nucl. Mater. 144 (1987) 94.

    Google Scholar 

  15. S. C. Schaefer and N. A. Gokcen,High Temp. Sci. 14 (1981) 153.

    Google Scholar 

  16. S. C. Schaefer, US Bureau of Mines Report of Investigation RI 8172 (1976) pp. 1–19.

  17. Idem, S. C. Schaefer, US Bureau of Mines Report of Investigation RI 8973 (1985) pp. 1–8.

  18. P. A. G. O'Hare, ANL, USA, private communication.

  19. I. Brain and O. Knacke, ‘Thermochemical Properties of Inorganic Substances’, Springer-Verlag, Berlin (1973).

    Google Scholar 

  20. O. Kubaschewski and C. B. Alcock, ‘Metallurgical Thermochemistry’, Pergamon Press, Oxford (1979) p. 258.

    Google Scholar 

  21. L. B. Pankratz, US Bureau of Mines Bulletin 674 (1984).

  22. K. S. Pitzer and L. Brewer, ‘Thermodynamics’ (edited by G. N. Lewis and L. Randall), McGraw-Hill, New York (1967).

    Google Scholar 

  23. G. Chattopadhyay, PhD Thesis, University of Bombay (1977).

  24. B. V. Joglekar, P. S. Nicholson and W. W. Smeltzer,Canad. Met. Quart. 12 (1973) 155.

    Google Scholar 

  25. M. Rivier and A. D. Pelton,J. Electrochem. Soc. 125 (1978) 1377.

    Google Scholar 

  26. D. J. Fray and B. Savory,J. Chem. Thermodyn. 7 (1975) 485.

    Google Scholar 

  27. F. A. Elrefaie and W. W. Smeltzer,J. Electrochem. Soc. 128 (1981) 1443.

    Google Scholar 

  28. L. Hsueh and D. N. Bennion,118 (1971) 1128.

    Google Scholar 

  29. R. Galli, P. Longhi, T. Mussini and F. A. Tropeano,Electrochim. Acta. 18 (1973) 1013.

    Google Scholar 

  30. N. K. Gupta and R. P. Tischer,J. Electrochem. Soc. 119 (1972) 1033.

    Google Scholar 

  31. A. D. Pelton, A. Dubreuil and M. Malenfant, in ‘Progress in Solid Electrolytes’ (edited by T. A. Wheat, A. Ahmad and A. K. Kuriakose). Energy, Mines and Resources, ERP/MSL 83-94 (TR), Ottawa (1983) p. 503.

  32. M. Itoh, K. Kimura and Z. Kozuka,Trans. Jap. Inst. Met. 26 (1985) 353.

    Google Scholar 

  33. N. S. Choudhury,J. Electrochem. Soc. 133 (1986) 426.

    Google Scholar 

  34. K. T. Jacob,J. Appl. Electrochem. 13 (1983) 471.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azad, A.M., Sreedharan, O.M. Comparative e.m.f. study of CaF2 and β-alumina cells with Ni/NiF2 and Fe/FeF2 or Cr/CrF2 electrodes. J Appl Electrochem 17, 949–955 (1987). https://doi.org/10.1007/BF01024361

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01024361

Keywords

Navigation