Skip to main content
Log in

Air Stability of Solid-State Sulfide Batteries and Electrolytes

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Sulfides have been widely acknowledged as one of the most promising solid electrolytes (SEs) for all-solid-state batteries (ASSBs) due to their superior ionic conductivity and favourable mechanical properties. However, the extremely poor air stability of sulfide SEs leads to destroyed structure/performance and release of toxic H2S gas, which greatly limits mass-production/practical application of sulfide SEs and ASSBs. This review is designed to serve as an all-inclusive handbook for studying this critical issue. First, the research history and milestone breakthroughs of this field are reviewed, and this is followed by an in-depth elaboration of the theoretical paradigms that have been developed thus far, including the random network theory of glasses, hard and soft acids and bases (HSAB) theory, thermodynamic analysis and kinetics of interfacial reactions. Moreover, the characterization of air stability is reviewed from the perspectives of H2S generation, morphology evolution, mass change, component/structure variations and electrochemical performance. Furthermore, effective strategies for improving the air stabilities of sulfide SEs are highlighted, including H2S absorbents, elemental substitution, design of new materials, surface engineering and sulfide-polymer composite electrolytes. Finally, future research directions are proposed for benign development of air stability for sulfide SEs and ASSBs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451, 652–657 (2008). https://doi.org/10.1038/451652a

    Article  CAS  PubMed  Google Scholar 

  2. Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004). https://doi.org/10.1021/cr030203g

    Article  CAS  Google Scholar 

  3. Hu, Y.S.: Batteries: getting solid. Nat. Energy 1, 16042 (2016). https://doi.org/10.1038/nenergy.2016.42

    Article  CAS  Google Scholar 

  4. Manthiram, A., Yu, X.W., Wang, S.F.: Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017). https://doi.org/10.1038/natrevmats.2016.103

    Article  CAS  Google Scholar 

  5. Zhao, Q., Stalin, S., Zhao, C.Z., et al.: Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020). https://doi.org/10.1038/s41578-019-0165-5

    Article  CAS  Google Scholar 

  6. Chen, R.S., Li, Q.H., Yu, X.Q., et al.: Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020). https://doi.org/10.1021/acs.chemrev.9b00268

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, X.B., Zhang, R., Zhao, C.Z., et al.: A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016). https://doi.org/10.1002/advs.201500213

    Article  CAS  Google Scholar 

  8. Sun, C.W., Liu, J., Gong, Y.D., et al.: Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017). https://doi.org/10.1016/j.nanoen.2017.01.028

    Article  CAS  Google Scholar 

  9. Bachman, J.C., Muy, S.: Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016). https://doi.org/10.1021/acs.chemrev.5b00563

    Article  CAS  PubMed  Google Scholar 

  10. Wu, Y.J., Wang, S., Li, H., et al.: Progress in thermal stability of all-solid-state-Li-ion-batteries. InfoMat 3, 827–853 (2021). https://doi.org/10.1002/inf2.12224

    Article  CAS  Google Scholar 

  11. Yan, W.L., Wu, F., Li, H., et al.: Application of Si based anodes in sulfide solid-state batteries. Energy Storage Sci. Technol. 10, 821–835 (2021). http://esst.cip.com.cn/EN/Y2021/V10/I3/821

  12. Wu, F., Liu, L.L., Wang, S., et al.: Solid state ionics-selected topics and new directions. Prog. Mater. Sci. 126, 100921 (2022). https://doi.org/10.1016/j.pmatsci.2022.100921

    Article  CAS  Google Scholar 

  13. Zhao, N., Khokhar, W., Bi, Z.J., et al.: Solid garnet batteries. Joule 3, 1190–1199 (2019). https://doi.org/10.1016/j.joule.2019.03.019

    Article  CAS  Google Scholar 

  14. Abouali, S., Yim, C.H., Merati, A., et al.: Garnet-based solid-state Li batteries: from materials design to battery architecture. ACS Energy Lett. 6, 1920–1941 (2021). https://doi.org/10.1021/acsenergylett.1c00401

    Article  CAS  Google Scholar 

  15. Wang, H.C., Sheng, L., Yasin, G., et al.: Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries. Energy Storage Mater. 33, 188–215 (2020). https://doi.org/10.1016/j.ensm.2020.08.014

    Article  Google Scholar 

  16. Tan, S.J., Zeng, X.X., Ma, Q., et al.: Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries. Electrochem. Energy Rev. 1, 113–138 (2018). https://doi.org/10.1007/s41918-018-0011-2

    Article  CAS  Google Scholar 

  17. López-Aranguren, P., Reynaud, M., Głuchowski, P., et al.: Crystalline LiPON as a bulk-type solid electrolyte. ACS Energy Lett. 6, 445–450 (2021). https://doi.org/10.1021/acsenergylett.0c02336

    Article  CAS  Google Scholar 

  18. Kamaya, N., Homma, K., Yamakawa, Y., et al.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011). https://doi.org/10.1038/nmat3066

    Article  CAS  PubMed  Google Scholar 

  19. Kato, Y., Hori, S., Saito, T., et al.: High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016). https://doi.org/10.1038/nenergy.2016.30

    Article  CAS  Google Scholar 

  20. Han, F.D., Gao, T., Zhu, Y.J., et al.: Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater. 6, 1501590 (2016). https://doi.org/10.1002/aenm.201501590

    Article  CAS  Google Scholar 

  21. Fitzhugh, W., Wu, F., Ye, L.H., et al.: A high-throughput search for functionally stable interfaces in sulfide solid-state lithium ion conductors. Adv. Energy Mater. 9, 1900807 (2019). https://doi.org/10.1002/aenm.201900807

    Article  CAS  Google Scholar 

  22. Wu, F., Fitzhugh, W., Ye, L.H., et al.: Advanced sulfide solid electrolyte by core-shell structural design. Nat. Commun. 9, 4037 (2018). https://doi.org/10.1038/s41467-018-06123-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, L.L., Wu, F., Li, H., et al.: Advances in electrochemical stability of sulfide solid-state electrolyte. J. Chin. Ceram. Soc. 47, 1367–1385 (2019)

    CAS  Google Scholar 

  24. Fitzhugh, W., Wu, F., Ye, L.H., et al.: Strain-stabilized ceramic-sulfide electrolytes. Small 15, 1901470 (2019). https://doi.org/10.1002/smll.201901470

    Article  CAS  Google Scholar 

  25. Haruyama, J., Sodeyama, K., Han, L.Y., et al.: Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 26, 4248–4255 (2014). https://doi.org/10.1021/cm5016959

    Article  CAS  Google Scholar 

  26. Zhu, Y.Z., He, X.F., Mo, Y.F.: Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015). https://doi.org/10.1021/acsami.5b07517

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y., Lv, Y., Su, Y.B., et al.: 5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries. Nano Energy 90, 106589 (2021). https://doi.org/10.1016/j.nanoen.2021.106589

    Article  CAS  Google Scholar 

  28. Richards, W.D., Miara, L.J., Wang, Y., et al.: Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016). https://doi.org/10.1021/acs.chemmater.5b04082

    Article  CAS  Google Scholar 

  29. Wang, S., Fang, R.Y., Li, Y.T., et al.: Interfacial challenges for all-solid-state batteries based on sulfide solid electrolytes. J. Materiomics 7, 209–218 (2021). https://doi.org/10.1016/j.jmat.2020.09.003

    Article  CAS  Google Scholar 

  30. Ye, L.H., Li, X.: A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021). https://doi.org/10.1038/s41586-021-03486-3

    Article  CAS  PubMed  Google Scholar 

  31. Xin, S., You, Y., Wang, S.F., et al.: Solid-state lithium metal batteries promoted by nanotechnology: progress and prospects. ACS Energy Lett. 2, 1385–1394 (2017). https://doi.org/10.1021/acsenergylett.7b00175

    Article  CAS  Google Scholar 

  32. Zhang, Z.H., Wu, L.P., Zhou, D., et al.: Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries. Nano Lett. 21, 5233–5239 (2021). https://doi.org/10.1021/acs.nanolett.1c01344

    Article  CAS  PubMed  Google Scholar 

  33. Wan, H.L., Liu, S.F., Deng, T., et al.: Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery. ACS Energy Lett. 6, 862–868 (2021). https://doi.org/10.1021/acsenergylett.0c02617

    Article  CAS  Google Scholar 

  34. Shi, Y.N., Zhou, D., Li, M.Q., et al.: Surface engineered Li metal anode for all-solid-state lithium metal batteries with high capacity. ChemElectroChem 8, 386–389 (2021). https://doi.org/10.1002/celc.202100010

    Article  CAS  Google Scholar 

  35. Peng, J., Wu, D.X., Song, F.M., et al.: High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode. Adv. Funct. Mater. 32, 2105776 (2022). https://doi.org/10.1002/adfm.202105776

    Article  CAS  Google Scholar 

  36. Muramatsu, H., Hayashi, A., Ohtomo, T., et al.: Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion. 182, 116–119 (2011). https://doi.org/10.1016/j.ssi.2010.10.013

    Article  CAS  Google Scholar 

  37. Liu, L.L., Xu, J.R., Wang, S., et al.: Practical evaluation of energy densities for sulfide solid-state batteries. eTransportation 1, 100010 (2019)

    Article  Google Scholar 

  38. Chen, X.F., Guan, Z.Q., Chu, F.L., et al.: Air-stable inorganic solid-state electrolytes for high energy density lithium batteries: challenges, strategies, and prospects. InfoMat 4, e12248 (2022). https://doi.org/10.1002/inf2.12248

    Article  CAS  Google Scholar 

  39. Zhao, S., Zhu, X.X., Jiang, W., et al.: Fundamental air stability in solid-state electrolytes: principles and solutions. Mater. Chem. Front. 5, 7452–7466 (2021). https://doi.org/10.1039/d1qm00951f

    Article  CAS  Google Scholar 

  40. Galven, C., Dittmer, J., Suard, E., et al.: Instability of lithium garnets against moisture. Structural characterization and dynamics of Li7-xHxLa3Sn2O12 and Li5-xHxLa3Nb2O12. Chem. Mater. 24, 3335–3345 (2012). https://doi.org/10.1021/cm300964k

    Article  CAS  Google Scholar 

  41. Yow, Z.F., Oh, Y.L., Gu, W.Y., et al.: Effect of Li+/H+ exchange in water treated Ta-doped Li7La3Zr2O12. Solid State Ion. 292, 122–129 (2016). https://doi.org/10.1016/j.ssi.2016.05.016

    Article  CAS  Google Scholar 

  42. Bohnke, O., Lorant, S., Roffat, M., et al.: Fast H+/Li+ ion exchange in Li0.30La0.57TiO3 nanopowder and films in water and in ambient air. Solid State Ion. 262, 563–567 (2014). https://doi.org/10.1016/j.ssi.2013.08.008

    Article  CAS  Google Scholar 

  43. Xia, W.H., Xu, B.Y., Duan, H.N., et al.: Reaction mechanisms of lithium garnet pellets in ambient air: the effect of humidity and CO2. J. Am. Ceram. Soc. 100, 2832–2839 (2017). https://doi.org/10.1111/jace.14865

    Article  CAS  Google Scholar 

  44. Wang, Y., Wu, Y.J., Wang, Z.X., et al.: Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity. J. Mater. Chem. A 10, 4517–4532 (2022). https://doi.org/10.1039/d1ta10966a

    Article  CAS  Google Scholar 

  45. Wang, S.H., Xu, X.W., Cui, C., et al.: Air sensitivity and degradation evolution of halide solid state electrolytes upon exposure. Adv. Funct. Mater. 32, 2108805 (2022). https://doi.org/10.1002/adfm.202108805

    Article  CAS  Google Scholar 

  46. Li, W.H., Liang, J.W., Li, M.S., et al.: Unraveling the origin of moisture stability of halide solid-state electrolytes by in situ and operando synchrotron X-ray analytical techniques. Chem. Mater. 32, 7019–7027 (2020). https://doi.org/10.1021/acs.chemmater.0c02419

    Article  CAS  Google Scholar 

  47. Harding, J.R., Amanchukwu, C.V., Hammond, P.T., et al.: Instability of poly(ethylene oxide) upon oxidation in lithium-air batteries. J. Phys. Chem. C 119, 6947–6955 (2015). https://doi.org/10.1021/jp511794g

    Article  CAS  Google Scholar 

  48. Hayashi, A., Muramatsu, H., Ohtomo, T., et al.: Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles. J. Mater. Chem. A 1, 6320–6326 (2013). https://doi.org/10.1039/c3ta10247e

    Article  CAS  Google Scholar 

  49. Li, J., Chen, H.W., Shen, Y.B., et al.: Covalent interfacial coupling for hybrid solid-state Li ion conductor. Energy Stor. Mater. 23, 277–283 (2019). https://doi.org/10.1016/j.ensm.2019.05.002

    Article  CAS  Google Scholar 

  50. Liang, J.W., Chen, N., Li, X.N., et al.: Li10Ge(P1–xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability. Chem. Mater. 32, 2664–2672 (2020). https://doi.org/10.1021/acs.chemmater.9b04764

    Article  CAS  Google Scholar 

  51. Sahu, G., Lin, Z., Li, J.C., et al.: Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4. Energy Environ. Sci. 7, 1053–1058 (2014). https://doi.org/10.1039/c3ee43357a

    Article  Google Scholar 

  52. Park, K.H., Oh, D.Y., Choi, Y.E., et al.: Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries. Adv. Mater. 28, 1874–1883 (2016). https://doi.org/10.1002/adma.201505008

    Article  CAS  PubMed  Google Scholar 

  53. Saienga, J., Martin, S.W.: The comparative structure, properties, and ionic conductivity of LiI + Li2S + GeS2 glasses doped with Ga2S3 and La2S3. J. Non Cryst. Solids 354, 1475–1486 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.08.058

    Article  CAS  Google Scholar 

  54. Ohtomo, T., Hayashi, A., Tatsumisago, M., et al.: Characteristics of the Li2O-Li2S-P2S5 glasses synthesized by the two-step mechanical milling. J. Non Cryst. Solids 364, 57–61 (2013). https://doi.org/10.1016/j.jnoncrysol.2012.12.044

    Article  CAS  Google Scholar 

  55. Hayashi, A., Muramatsu, H., Ohtomo, T., et al.: Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries. J. Alloys Compd. 591, 247–250 (2014). https://doi.org/10.1016/j.jallcom.2013.12.191

    Article  CAS  Google Scholar 

  56. Zhang, Z.X., Zhang, L., Yan, X.L., et al.: All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune. J. Power Sources 410(411), 162–170 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.016

    Article  CAS  Google Scholar 

  57. Liu, G.Z., Xie, D.J., Wang, X.L., et al.: High air-stability and superior lithium ion conduction of Li3+3xP1−xZnxS4−xOx by aliovalent substitution of ZnO for all-solid-state lithium batteries. Energy Storage Mater. 17, 266–274 (2019). https://doi.org/10.1016/j.ensm.2018.07.008

    Article  Google Scholar 

  58. Chen, T., Zhang, L., Zhang, Z.X., et al.: Argyrodite solid electrolyte with a stable interface and superior dendrite suppression capability realized by ZnO co-doping. ACS Appl. Mater. Interfaces 11, 40808–40816 (2019). https://doi.org/10.1021/acsami.9b13313

    Article  CAS  PubMed  Google Scholar 

  59. Ahmad, N., Zhou, L., Faheem, M., et al.: Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 12, 21548–21558 (2020). https://doi.org/10.1021/acsami.0c00393

    Article  CAS  PubMed  Google Scholar 

  60. Pearson, R.G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963). https://doi.org/10.1021/ja00905a001

    Article  CAS  Google Scholar 

  61. Kimura, T., Kato, A., Hotehama, C., et al.: Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes. Solid State Ion. 333, 45–49 (2019). https://doi.org/10.1016/j.ssi.2019.01.017

    Article  CAS  Google Scholar 

  62. Wang, Y.Q., Lü, X., Zheng, C., et al.: Chemistry design towards a stable sulfide-based superionic conductor Li4Cu8Ge3S12. Angew. Chem. Int. Ed. 58, 7673–7677 (2019). https://doi.org/10.1002/anie.201901739

    Article  CAS  Google Scholar 

  63. Zhang, Z.R., Zhang, J.X., Sun, Y.L., et al.: Li4-xSbxSn1−xS4 solid solutions for air-stable solid electrolytes. J. Energy Chem. 41, 171–176 (2020). https://doi.org/10.1016/j.jechem.2019.05.015

    Article  Google Scholar 

  64. Kwak, H., Park, K.H., Han, D., et al.: Li+ conduction in air-stable Sb-Substituted Li4SnS4 for all-solid-state Li-ion batteries. J. Power Sources 446, 227338 (2020). https://doi.org/10.1016/j.jpowsour.2019.227338

    Article  CAS  Google Scholar 

  65. Zhao, F.P., Liang, J.W., Yu, C., et al.: A versatile Sn-substituted argyrodite sulfide electrolyte for all-solid-state Li metal batteries. Adv. Energy Mater. 10, 1903422 (2020). https://doi.org/10.1002/aenm.201903422

    Article  CAS  Google Scholar 

  66. Tan, D.H.S., Banerjee, A., Deng, Z., et al.: Enabling thin and flexible solid-state composite electrolytes by the scalable solution process. ACS Appl. Energy Mater. 2, 6542–6550 (2019). https://doi.org/10.1021/acsaem.9b01111

    Article  CAS  Google Scholar 

  67. Li, Y., Arnold, W., Thapa, A., et al.: Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries. ACS Appl. Mater. Interfaces 12, 42653–42659 (2020). https://doi.org/10.1021/acsami.0c08261

    Article  CAS  PubMed  Google Scholar 

  68. Jung, W.D., Jeon, M., Shin, S.S., et al.: Functionalized sulfide solid electrolyte with air-stable and chemical-resistant oxysulfide nanolayer for all-solid-state batteries. ACS Omega 5, 26015–26022 (2020). https://doi.org/10.1021/acsomega.0c03453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhu, Y.Z., Mo, Y.F.: Materials design principles for air-stable lithium/sodium solid electrolytes. Angew. Chem. Int. Ed. 59, 17472–17476 (2020). https://doi.org/10.1002/anie.202007621

    Article  CAS  Google Scholar 

  70. Wang, C.H., Liang, J.W., Zhao, Y., et al.: All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy Environ. Sci. 14, 2577–2619 (2021). https://doi.org/10.1039/d1ee00551k

    Article  CAS  Google Scholar 

  71. Fukushima, A., Hayashi, A., Yamamura, H., et al.: Mechanochemical synthesis of high lithium ion conducting solid electrolytes in a Li2S-P2S5-Li3N system. Solid State Ion. 304, 85–89 (2017). https://doi.org/10.1016/j.ssi.2017.03.010

    Article  CAS  Google Scholar 

  72. Park, K.H., Bai, Q., Kim, D.H., et al.: Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater. 8, 1800035 (2018). https://doi.org/10.1002/aenm.201800035

    Article  CAS  Google Scholar 

  73. Pearson, R.G.: Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. USA. 83, 8440–8441 (1986). https://doi.org/10.1073/pnas.83.22.8440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Klopman, G.: Chemical reactivity and the concept of charge- and frontier-controlled reactions. J. Am. Chem. Soc. 90, 223–234 (1968). https://doi.org/10.1021/ja01004a00210.1021/ja01004a002

    Article  CAS  Google Scholar 

  75. Shang, S.L., Yu, Z.X., Wang, Y., et al.: Origin of outstanding phase and moisture stability in a Na3P1–xAsxS4 superionic conductor. ACS Appl. Mater. Interfaces 9, 16261–16269 (2017). https://doi.org/10.1021/acsami.7b03606

    Article  CAS  PubMed  Google Scholar 

  76. Kim, J.S., Jeon, M., Kim, S., et al.: Structural and electronic descriptors for atmospheric instability of Li-thiophosphate using density functional theory. Solid State Ion. 346, 115225 (2020). https://doi.org/10.1016/j.ssi.2020.115225

    Article  CAS  Google Scholar 

  77. Iwasaki, R., Hori, S., Kanno, R., et al.: Weak anisotropic lithium-ion conductivity in single crystals of Li10GeP2S12. Chem. Mater. 31, 3694–3699 (2019). https://doi.org/10.1021/acs.chemmater.9b00420

    Article  CAS  Google Scholar 

  78. Kim, J.S., Jung, W.D., Shin, S.S., et al.: Roles of polymerized anionic clusters stimulating for hydrolysis deterioration in Li7P3S11. J. Phys. Chem. C 125, 19509–19516 (2021). https://doi.org/10.1021/acs.jpcc.1c05034

    Article  CAS  Google Scholar 

  79. Xu, M., Song, S.B., Daikuhara, S., et al.: Li10GeP2S12-type structured solid solution phases in the Li9+δP3+δS12–kOk system: controlling crystallinity by synthesis to improve the air stability. Inorg. Chem. 61, 52–61 (2022). https://doi.org/10.1021/acs.inorgchem.1c01748

    Article  CAS  PubMed  Google Scholar 

  80. Kanazawa, K., Yubuchi, S., Hotehama, C., et al.: Mechanochemical synthesis and characterization of metastable hexagonal Li4SnS4 solid electrolyte. Inorg. Chem. 57, 9925–9930 (2018). https://doi.org/10.1021/acs.inorgchem.8b01049

    Article  CAS  PubMed  Google Scholar 

  81. Calpa, M., Rosero-Navarro, N.C., Miura, A., et al.: Chemical stability of Li4PS4I solid electrolyte against hydrolysis. Appl. Mater. Today 22, 100918 (2021). https://doi.org/10.1016/j.apmt.2020.100918

    Article  Google Scholar 

  82. Tufail, M.K., Zhou, L., Ahmad, N., et al.: A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries. Chem. Eng. J. 407, 127149 (2021). https://doi.org/10.1016/j.cej.2020.127149

    Article  CAS  Google Scholar 

  83. Lee, Y., Jeong, J., Lee, H.J., et al.: Lithium argyrodite sulfide electrolytes with high ionic conductivity and air stability for all-solid-state Li-ion batteries. ACS Energy Lett. 7, 171–179 (2022). https://doi.org/10.1021/acsenergylett.1c02428

    Article  CAS  Google Scholar 

  84. Lu, P.S., Liu, L.L., Wang, S., et al.: Superior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity. Adv. Mater. 33, 2100921 (2021). https://doi.org/10.1002/adma.202100921

    Article  CAS  Google Scholar 

  85. Khurram Tufail, M., Ahmad, N., Zhou, L., et al.: Insight on air-induced degradation mechanism of Li7P3S11 to design a chemical-stable solid electrolyte with high Li2S utilization in all-solid-state Li/S batteries. Chem. Eng. J. 425, 130535 (2021). https://doi.org/10.1016/j.cej.2021.130535

    Article  CAS  Google Scholar 

  86. Li, Y.Y., Li, J.W., Cheng, J., et al.: Enhanced air and electrochemical stability of Li7P3S11-based solid electrolytes enabled by aliovalent substitution of SnO2. Adv. Mater. Interfaces 8, 2100368 (2021). https://doi.org/10.1002/admi.202100368

    Article  CAS  Google Scholar 

  87. Tian, Y.S., Sun, Y.Z., Hannah, D.C., et al.: Reactivity-guided interface design in Na metal solid-state batteries. Joule 3, 1037–1050 (2019). https://doi.org/10.1016/j.joule.2018.12.019

    Article  CAS  Google Scholar 

  88. Xu, J.R., Li, Y.X., Lu, P.S., et al.: Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-conducting protection layer. Adv. Energy Mater. 12, 2102348 (2022). https://doi.org/10.1002/aenm.202102348

    Article  CAS  Google Scholar 

  89. Joos, M., Schneider, C., Münchinger, A., et al.: Impact of hydration on ion transport in Li2Sn2SxH2O. J. Mater. Chem. A 9, 16532–16544 (2021). https://doi.org/10.1039/d1ta04736a

    Article  CAS  Google Scholar 

  90. Cho, W., Kim, W.J., Lee, D.G., et al.: Enhanced air-stability of argyrodite solid electrolyte by introducing zeolite additive as H2S scavenger. Meet. Abstr. MA2020-02, 951 (2020). https://doi.org/10.1149/ma2020-025951mtgabs

    Article  Google Scholar 

  91. Ye, L.H., Gil-González, E., Li, X.: Li9.54Si1.74(P1−xSbx)1.44S11.7Cl0.3: a functionally stable sulfide solid electrolyte in air for solid-state batteries. Electrochem. Commun. 128, 107058 (2021). https://doi.org/10.1016/j.elecom.2021.107058

    Article  CAS  Google Scholar 

  92. Ohtomo, T., Hayashi, A., Tatsumisago, M., et al.: Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives. J. Mater. Sci. 48, 4137–4142 (2013). https://doi.org/10.1007/s10853-013-7226-8

    Article  CAS  Google Scholar 

  93. Zhao, F.P., Alahakoon, S.H., Adair, K., et al.: An air-stable and Li-metal-compatible glass-ceramic electrolyte enabling high-performance all-solid-state Li metal batteries. Adv. Mater. 33, 2006577 (2021). https://doi.org/10.1002/adma.202006577

    Article  CAS  Google Scholar 

  94. Kaib, T., Haddadpour, S., Kapitein, M., et al.: New lithium chalcogenidotetrelates, LiChT: synthesis and characterization of the Li+-conducting tetralithium ortho-sulfidostannate Li4SnS4. Chem. Mater. 24, 2211–2219 (2012). https://doi.org/10.1021/cm3011315

    Article  CAS  Google Scholar 

  95. Zhang, Q., Cao, D.X., Ma, Y., et al.: Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31, 1901131 (2019). https://doi.org/10.1002/adma.201901131

    Article  CAS  Google Scholar 

  96. Ozekmekci, M., Salkic, G., Fellah, M.F.: Use of zeolites for the removal of H2S: a mini-review. Fuel Process. Technol. 139, 49–60 (2015). https://doi.org/10.1016/j.fuproc.2015.08.015

    Article  CAS  Google Scholar 

  97. Sigot, L., Ducom, G., Germain, P.: Adsorption of hydrogen sulfide (H2S) on zeolite (Z): retention mechanism. Chem. Eng. J. 287, 47–53 (2016). https://doi.org/10.1016/j.cej.2015.11.010

    Article  CAS  Google Scholar 

  98. Lee, D.G., Park, K.H., Kim, S.Y., et al.: Critical role of zeolites as H2S scavengers in argyrodite Li6PS5Cl solid electrolytes for all-solid-state batteries. J. Mater. Chem. A 9, 17311–17316 (2021). https://doi.org/10.1039/d1ta04799j

    Article  CAS  Google Scholar 

  99. Ren, H.T., Zhang, Z.Q., Zhang, J.Z., et al.: Improvement of stability and solid-state battery performances of annealed 70Li2S–30P2S5 electrolytes by additives. Rare Met. 41, 106–114 (2022). https://doi.org/10.1007/s12598-021-01804-2

    Article  CAS  Google Scholar 

  100. Tao, Y.C., Chen, S.J., Liu, D., et al.: Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells. J. Electrochem. Soc. 163, A96–A101 (2015). https://doi.org/10.1149/2.0311602jes

    Article  CAS  Google Scholar 

  101. Raj, R., Wolfenstine, J.: Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries. J. Power Sources 343, 119–126 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.037

    Article  CAS  Google Scholar 

  102. Lu, Y., Zhao, C.Z., Yuan, H., et al.: Critical current density in solid-state lithium metal batteries: mechanism, influences, and strategies. Adv. Funct. Mater. 31, 2009925 (2021). https://doi.org/10.1002/adfm.202009925

    Article  CAS  Google Scholar 

  103. Peng, L.F., Chen, S.Q., Yu, C., et al.: Enhancing moisture and electrochemical stability of the Li5.5PS4.5Cl1.5 electrolyte by oxygen doping. ACS Appl. Mater. Interfaces 14, 4179–4185 (2022). https://doi.org/10.1021/acsami.1c21561

    Article  CAS  PubMed  Google Scholar 

  104. Xu, H.J., Cao, G.Q., Shen, Y.L., et al.: Enabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes. Energy Environ. Mater (2022). https://doi.org/10.1002/eem2.12282

    Article  Google Scholar 

  105. Xie, D.J., Chen, S.J., Zhang, Z.H., et al.: High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries. J. Power Sources 389, 140–147 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.021

    Article  CAS  Google Scholar 

  106. Zhao, B.S., Wang, L., Chen, P., et al.: Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass-ceramic electrolytes for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13, 34477–34485 (2021). https://doi.org/10.1021/acsami.1c10238

    Article  CAS  PubMed  Google Scholar 

  107. Wu, L.P., Liu, G.Z., Wan, H.L., et al.: Superior lithium-stable Li7P2S8I solid electrolyte for all-solid-state lithium batteries. J. Power Sources 491, 229565 (2021). https://doi.org/10.1016/j.jpowsour.2021.229565

    Article  CAS  Google Scholar 

  108. Rajagopal, R., Cho, J.U., Subramanian, Y., et al.: Preparation of highly conductive metal doped/substituted Li7P2S8Br(1–x)Ix type lithium superionic conductor for all-solid-state lithium battery applications. Chem. Eng. J. 428, 132155 (2022). https://doi.org/10.1016/j.cej.2021.132155

    Article  CAS  Google Scholar 

  109. Deiseroth, H.J., Kong, S.T., Eckert, H., et al.: Li6PS5X: a class of crystalline Li-rich solids with an unusually high li+ mobility. Angew. Chem. Int. Ed. 47, 755–758 (2008). https://doi.org/10.1002/anie.200703900

    Article  CAS  Google Scholar 

  110. Taklu, B.W., Su, W.N., Nikodimos, Y., et al.: Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano Energy 90, 106542 (2021). https://doi.org/10.1016/j.nanoen.2021.106542

    Article  CAS  Google Scholar 

  111. Zhou, L., Tufail, M.K., Ahmad, N., et al.: Strong interfacial adhesion between the Li2S cathode and a functional Li7P2.9Ce0.2S10.9Cl0.3 solid-state electrolyte endowed long-term cycle stability to all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 13, 28270–28280 (2021). https://doi.org/10.1021/acsami.1c06328

    Article  CAS  PubMed  Google Scholar 

  112. Yu, Z.X., Shang, S.L., Seo, J.H., et al.: Exceptionally high ionic conductivity in Na3P0.62As0.38S4 with improved moisture stability for solid-state sodium-ion batteries. Adv. Mater. 29, 1605561 (2017). https://doi.org/10.1002/adma.201605561

    Article  CAS  Google Scholar 

  113. Jiang, Z., Peng, H.L., Liu, Y., et al.: A versatile Li6.5In0.25P0.75S5I sulfide electrolyte triggered by ultimate-energy mechanical alloying for all-solid-state lithium metal batteries. Adv. Energy Mater. 11, 2101521 (2021). https://doi.org/10.1002/aenm.202101521

    Article  CAS  Google Scholar 

  114. Subramanian, Y., Rajagopal, R., Ryu, K.S.: Synthesis, air stability and electrochemical investigation of lithium superionic bromine substituted argyrodite (Li6−xPS5−xCl1.0Brx) for all-solid-state lithium batteries. J. Power Sources 520, 230849 (2022). https://doi.org/10.1016/j.jpowsour.2021.230849

    Article  CAS  Google Scholar 

  115. Min, S., Park, C., Yoon, I., et al.: Enhanced electrochemical stability and moisture reactivity of Al2S3 doped argyrodite solid electrolyte. J. Electrochem. Soc. 168, 070511 (2021). https://doi.org/10.1149/1945-7111/ac0f5c

    Article  CAS  Google Scholar 

  116. Holzmann, T., Schoop, L.M., Ali, M.N., et al.: Li0.6 [Li0.2Sn0.8S2]: a layered lithium superionic conductor. Energy Environ. Sci. 9, 2578–2585 (2016). https://doi.org/10.1039/c6ee00633g

    Article  CAS  Google Scholar 

  117. Kuhn, A., Holzmann, T., Nuss, J., et al.: A facile wet chemistry approach towards unilamellar tin sulfide nanosheets from Li4xSn1–xS2 solid solutions. J. Mater. Chem. A 2, 6100–6106 (2014). https://doi.org/10.1039/c3ta14190j

    Article  CAS  Google Scholar 

  118. Brant, J.A., Massi, D.M., Holzwarth, N.A.W., et al.: Fast lithium ion conduction in Li2SnS3: synthesis, physicochemical characterization, and electronic structure. Chem. Mater. 27, 189–196 (2015). https://doi.org/10.1021/cm5037524

    Article  CAS  Google Scholar 

  119. Choi, Y.E., Park, K.H., Kim, D.H., et al.: Coatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries. Chemsuschem 10, 2605–2611 (2017). https://doi.org/10.1002/cssc.201700409

    Article  CAS  PubMed  Google Scholar 

  120. Matsuda, R., Kokubo, T., Phuc, N.H.H., et al.: Preparation of ambient air-stable electrolyte Li4SnS4 by aqueous ion-exchange process. Solid State Ion. 345, 115190 (2020). https://doi.org/10.1016/j.ssi.2019.115190

    Article  CAS  Google Scholar 

  121. Xu, J., Liu, L., Yao, N., et al.: Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries. Mater. Today Nano 8, 100048 (2019). https://doi.org/10.1016/j.mtnano.2019.100048

    Article  Google Scholar 

  122. Schiwy, W., Pohl, S., Krebs, B.: Darstellung und struktur von Na4SnS4—14H2O. Z. Anorg. Allg. Chem. 402, 77–86 (1973). https://doi.org/10.1002/zaac.19734020110

    Article  CAS  Google Scholar 

  123. Heo, J.W., Banerjee, A., Park, K.H., et al.: New Na-ion solid electrolytes Na4−xSn1−xSbxS4 (0.02 ≤ x ≤ 0.33) for all-solid-state Na-ion batteries. Adv. Energy Mater. 8, 1702716 (2018). https://doi.org/10.1002/aenm.201702716

    Article  CAS  Google Scholar 

  124. Jia, H.H., Sun, Y.L., Zhang, Z.R., et al.: Group 14 element based sodium chalcogenide Na4Sn0.67Si0.33S4 as structure template for exploring sodium superionic conductors. Energy Storage Mater. 23, 508–513 (2019). https://doi.org/10.1016/j.ensm.2019.04.011

    Article  Google Scholar 

  125. Xiong, S., Liu, Z.T., Yang, L.F., et al.: Anion and cation co-doping of Na4SnS4 as sodium superionic conductors. Mater. Today Phys. 15, 100281 (2020). https://doi.org/10.1016/j.mtphys.2020.100281

    Article  Google Scholar 

  126. Wang, H., Chen, Y., Hood, Z.D., et al.: An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure. Angew. Chem. Int. Ed. 55, 8551–8555 (2016). https://doi.org/10.1002/anie.201601546

    Article  CAS  Google Scholar 

  127. Zhang, L., Zhang, D.C., Yang, K., et al.: Vacancy-contained tetragonal Na3SbS4 superionic conductor. Adv. Sci. 3, 1600089 (2016). https://doi.org/10.1002/advs.201600089

    Article  CAS  Google Scholar 

  128. Banerjee, A., Park, K.H., Heo, J.W., et al.: Na3SbS4: a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries. Angew. Chem. Int. Ed. 55, 9634–9638 (2016). https://doi.org/10.1002/anie.201604158

    Article  CAS  Google Scholar 

  129. Kim, T.W., Park, K.H., Choi, Y.E., et al.: Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries. J. Mater. Chem. A 6, 840–844 (2018). https://doi.org/10.1039/c7ta09242c

    Article  CAS  Google Scholar 

  130. Hayashi, A., Masuzawa, N., Yubuchi, S., et al.: A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat. Commun. 10, 5266 (2019). https://doi.org/10.1038/s41467-019-13178-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fuchs, T., Culver, S.P., Till, P., et al.: Defect-mediated conductivity enhancements in Na3–xPn1–xWxS4 (Pn = P, Sb) using aliovalent substitutions. ACS Energy Lett. 5, 146–151 (2020). https://doi.org/10.1021/acsenergylett.9b02537

    Article  CAS  Google Scholar 

  132. Yubuchi, S., Ito, A., Masuzawa, N., et al.: Aqueous solution synthesis of Na3SbS4–Na2WS4 superionic conductors. J. Mater. Chem. A 8, 1947–1954 (2020). https://doi.org/10.1039/c9ta02246e

    Article  CAS  Google Scholar 

  133. Tsuji, F., Yubuchi, S., Sakuda, A., et al.: Preparation of sodium-ion-conductive Na3–xSbS4–xClx solid electrolytes. J. Ceram. Soc. Japan 128, 641–647 (2020). https://doi.org/10.2109/jcersj2.20089

    Article  CAS  Google Scholar 

  134. Wang, X.L., Xiao, R.J., Li, H., et al.: Oxysulfide LiAlSO: a lithium superionic conductor from first principles. Phys. Rev. Lett. 118, 195901 (2017). https://doi.org/10.1103/physrevlett.118.195901

    Article  CAS  PubMed  Google Scholar 

  135. Kuo, D.H., Lo, R., Hsueh, T.H., et al.: LiSnOS/gel polymer hybrid electrolyte for the safer and performance-enhanced solid-state LiCoO2/Li lithium-ion battery. J. Power Sources 429, 89–96 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.010

    Article  CAS  Google Scholar 

  136. Gamon, J., Duff, B.B., Dyer, M.S., et al.: Computationally guided discovery of the sulfide Li3AlS3 in the Li-Al-S phase field: structure and lithium conductivity. Chem. Mater. 31, 9699–9714 (2019). https://doi.org/10.1021/acs.chemmater.9b03230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sedlmaier, S.J., Indris, S., Dietrich, C., et al.: Li4PS4I: a Li+ superionic conductor synthesized by a solvent-based soft chemistry approach. Chem. Mater. 29, 1830–1835 (2017). https://doi.org/10.1021/acs.chemmater.7b00013

    Article  CAS  Google Scholar 

  138. Zhou, L.D., Assoud, A., Zhang, Q., et al.: New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 141, 19002–19013 (2019). https://doi.org/10.1021/jacs.9b08357

    Article  CAS  PubMed  Google Scholar 

  139. Sun, X., Stavola, A.M., Cao, D.X., et al.: Operando EDXRD study of all-solid-state lithium batteries coupling thioantimonate superionic conductors with metal sulfide. Adv. Energy Mater. 11, 2002861 (2021). https://doi.org/10.1002/aenm.202002861

    Article  CAS  Google Scholar 

  140. Lee, Y., Jeong, J., Lim, H.D., et al.: Superionic Si-substituted lithium argyrodite sulfide electrolyte Li6+xSb1–xSixS5I for all-solid-state batteries. ACS Sustain. Chem. Eng. 9, 120–128 (2021). https://doi.org/10.1021/acssuschemeng.0c05549

    Article  CAS  Google Scholar 

  141. Richards, W.D., Tsujimura, T., Miara, L.J., et al.: Design and synthesis of the superionic conductor Na10SnP2S12. Nat. Commun. 7, 11009 (2016). https://doi.org/10.1038/ncomms11009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zhang, Z., Ramos, E., Lalère, F., et al.: Na11Sn2PS12: a new solid state sodium superionic conductor. Energy Environ. Sci. 11, 87–93 (2018). https://doi.org/10.1039/c7ee03083e

    Article  CAS  Google Scholar 

  143. Duchardt, M., Ruschewitz, U., Adams, S., et al.: Vacancy-controlled Na+ superion conduction in Na11Sn2PS12. Angew. Chem. Int. Ed. 57, 1351–1355 (2018). https://doi.org/10.1002/anie.201712769

    Article  CAS  Google Scholar 

  144. Ramos, E.P., Zhang, Z.Z., Assoud, A., et al.: Correlating ion mobility and single crystal structure in sodium-ion chalcogenide-based solid state fast ion conductors: Na11Sn2PnS12 (Pn = Sb, P). Chem. Mater. 30, 7413–7417 (2018). https://doi.org/10.1021/acs.chemmater.8b02077

    Article  CAS  Google Scholar 

  145. Weng, W., Liu, G.Z., Shen, L., et al.: High ionic conductivity and stable phase Na11.5Sn2Sb0.5Ti0.5S12 for all-solid-state sodium batteries. J. Power Sources 512, 230485 (2021). https://doi.org/10.1016/j.jpowsour.2021.230485

    Article  CAS  Google Scholar 

  146. Liu, G.Z., Sun, X.R., Yu, X.Q., et al.: Na10SnSb2S12: a nanosized air-stable solid electrolyte for all-solid-state sodium batteries. Chem. Eng. J. 420, 127692 (2021). https://doi.org/10.1016/j.cej.2020.127692

    Article  CAS  Google Scholar 

  147. Fan, B., Xu, Y.H., Ma, R., et al.: Will sulfide electrolytes be suitable candidates for constructing a stable solid/liquid electrolyte interface? ACS Appl. Mater. Interfaces 12, 52845–52856 (2020). https://doi.org/10.1021/acsami.0c16899

    Article  CAS  PubMed  Google Scholar 

  148. Liu, G.Z., Shi, J.M., Zhu, M.T., et al.: Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Storage Mater. 38, 249–254 (2021). https://doi.org/10.1016/j.ensm.2021.03.017

    Article  Google Scholar 

  149. Tsukasaki, H., Igarashi, K., Wakui, A., et al.: In situ observation of the deterioration process of sulfide-based solid electrolytes using airtight and air-flow TEM systems. Microscopy 70, 519–525 (2021). https://doi.org/10.1093/jmicro/dfab022

    Article  CAS  PubMed  Google Scholar 

  150. Kim, Y., Saienga, J., Martin, S.W.: Glass formation in and structural investigation of Li2S + GeS2 + GeO2 composition using Raman and IR spectroscopy. J. Non Cryst. Solids 351, 3716–3724 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.09.028

    Article  CAS  Google Scholar 

  151. Ohtomo, T., Hayashi, A., Tatsumisago, M., et al.: All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling. J. Solid State Electrochem. 17, 2551–2557 (2013). https://doi.org/10.1007/s10008-013-2149-5

    Article  CAS  Google Scholar 

  152. Yohannan, J.P., Vidyasagar, K.: Syntheses, structural variants and characterization of AInM’S4 (A=alkali metals, Tl; M’ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS4 and KInSnS4 compounds. J. Solid State Chem. 238, 291–302 (2016). https://doi.org/10.1016/j.jssc.2016.03.045

    Article  CAS  Google Scholar 

  153. Ohtomo, T., Hayashi, A., Tatsumisago, M., et al.: Glass electrolytes with high ion conductivity and high chemical stability in the system LiI-Li2O-Li2S-P2S5. Electrochemistry 81, 428–431 (2013). https://doi.org/10.5796/electrochemistry.81.428

    Article  CAS  Google Scholar 

  154. Sahu, G., Rangasamy, E., Li, J.C., et al.: A high-conduction Ge substituted Li3AsS4 solid electrolyte with exceptional low activation energy. J. Mater. Chem. A 2, 10396–10403 (2014). https://doi.org/10.1039/c4ta01243g

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Program-Automobile Joint Fund of the National Natural Science Foundation of China (Grant No. U1964205), the Key R&D Project funded by the Department of Science and Technology of Jiangsu Province (Grant No. BE2020003), the General Program of the National Natural Science Foundation of China (Grant No. 51972334), the General Program of the National Natural Science Foundation of Beijing (Grant No. 2202058), the Cultivation Project of Leading Innovative Experts in Changzhou City (CQ20210003), the National Overseas High-Level Expert Recruitment Program (Grant No. E1JF021E11), the Talent Program of the Chinese Academy of Sciences, “Scientist Studio Program Funding” from the Yangtze River Delta Physics Research Center and the Tianmu Lake Institute of Advanced Energy Storage Technologies (Grant No. TIES-SS0001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Li or Fan Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Wu, D., Chen, L. et al. Air Stability of Solid-State Sulfide Batteries and Electrolytes. Electrochem. Energy Rev. 5, 3 (2022). https://doi.org/10.1007/s41918-022-00149-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41918-022-00149-3

Keywords

Navigation