Skip to main content
Log in

Methane polymerization with a hollow cathode: Influence of the cathode metal

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Methane, mixed with argon, has been polymerized by means of a hollow-cathode discharge system. Two types of cathodes were studied; one was made of a solid solution of 81% tungsten and 19% platinum, while the other was of pure tungsten. Under identical operating conditions, a higher polymer yield was found in the case of the platinum cathode (90% against 70% for tungsten). The work function of the solid solution was estimated to be 6.3 eV, compared with 4.4 eV for tungsten. In terms of the data available, the thermionic current, which is the main source of energetic electrons, is about one order of magnitude lower for the solid solution cathode when compared with the tungsten cathode thermionic current. However, the polymer yield observed is higher in the former case. The concentration of the CH species in the hollow cathode was found to differ greatly for the cathodes tested and was about 5 times higher in the case of tungsten-platinum cathodes. Since no excited platinum vapor could be detected in the gas phase, the increase in CH concentration was attributed to a catalytic effect of the cathode inside surface. An evaluation of the plasma polymer deposition rate yields 70 nm·s−1 for the platinum-tungsten type hollow cathode and 42 nm·s−1 for the tungsten one. In both cases, the deposition rate is much higher than those obtained from the most widely used methods for plasma polymer deposition (0.10–1.0 nm·s−1) implying methane-argon mixtures, and is comparable to the results obtained with a new type of plasma polymer deposition reactor described in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Mort and F. Jansen,Plasma-Deposited Thin Films, CRC Press, Boca Raton, Florida (1986), pp. 94–103.

    Google Scholar 

  2. H. Yasuda, inThin Film Processes, J. L. Vossen and W. Kern, eds., Academic Press, New York (1978).

    Google Scholar 

  3. N. Shen,Plasma Chemistry of Polymers, Marcel Dekker, New York (1976).

    Google Scholar 

  4. R. J. Jensen, A. T. Bell, and D. S. Soong,Plasma Chem. Plasma Process. 3, 139 (1983).

    Google Scholar 

  5. R. Avni, U. Carmi, I. Rosenthal, and A. Inspektor, “Radical and ion-molecule reactions in a microwave plasma at low pressures,” 6th International Symposium on Plasma Chemistry, Montreal, Quebec, Canada, 1983.

  6. G. M. W. Kroesen, C. J. Timmermans, and D. C. Schram, “Expanding plasma used for plasma deposition,” 8th International Symposium on Plasma Chemistry, Tokyo, Japan, 1987.

  7. U. Carmi, A. Inspektor, and R. Avni,Plasma Chem. Plasma Process. 1, 233 (1981).

    Google Scholar 

  8. R. J. Jensen, A. T. Bell, and D. S. Soong,Plasma Chem. Plasma Process. 3, 163 (1983).

    Google Scholar 

  9. C. M. Ferreira and J. L. Delcroix,J. Phys. 36, 1233 (1975).

    Google Scholar 

  10. P. Meubus, “Polymerization of methane in a hollow cathode discharge,” 35th Canadian Chemical Engineering Conference, Calgary, Canada, October 6–7 (1985), Paper 7-63.

  11. P. Meubus and Gilles Jean, “Methane polymerization using a hollow cathode discharge,” Preprint., Am. Chem. Soc.Div., Fuel Chem., 32(3), P760; Methane Activation Symposium, New Orleans, U.S.A. (1987).

  12. H. Schüler and M. Stockburger,Z. Naturforsch. 14a, 229 (1959).

    Google Scholar 

  13. A. Brunet,J. Phys. Appl. 12, 1105 (1977).

    Google Scholar 

  14. B. Singh, O. R. Mesker, A. W. Levine and Y. Arie,Appl. Phys. Lett. 52, 1658 (1988).

    Google Scholar 

  15. G. M. W. Kroesen, C. J. Timmermans, and D. C. Schram,Pure Appl.Chem. 60, 795 (1988).

    Google Scholar 

  16. W. Braun, K. H. Welge, and J. R. McNesby,J. Chem. Phys. 45, 2651 (1966).

    Google Scholar 

  17. J. B. Hasted,Physics of Atomic Collisions, Butterworth London (1964).

    Google Scholar 

  18. A. P. Bois d'Enghien, J. Vrebosch, and A. Van Tiggelen,Bull. Soc. Chim. Fr. 6, 2315 (1968).

    Google Scholar 

  19. P. Marcus and I. Platzner,Int. J. Mass. Spectrom. 32, 77 (1979).

    Google Scholar 

  20. H. Cobine,Gaseous Conductors, Dover, New York (1958) p. 109.

    Google Scholar 

  21. ASM Handbook Committee,Metallography, Structures and Phase Diagrams, 8th edn., Vol. 8, American Society for Metals (1973), p. 331.

  22. Y. S. Touloukian and D. P. DeWitt,Thermal Radiative Properties, IFI/Plenum, New York (1970), pp. 542, 802.

    Google Scholar 

  23. H. Cobine,Gaseous Conductors, Dover, New York (1958), p. 303.

    Google Scholar 

  24. J. R. Hollahan and A. T. Bell,Techniques and Applications of Plasma Chemistry Wiley, New York (1974), p. 35.

    Google Scholar 

  25. H. Lange,Pol. J. Chem. 55, 897 (1981).

    Google Scholar 

  26. A. Szymanski and H. Lange,Bull. Acad. Pol. Sci., Vol. XVII,9, 717 (1979).

    Google Scholar 

  27. A. G. Gaydon,The Spectroscopy of Flames, Chapman and Hall, London (1957), p. 116.

    Google Scholar 

  28. G. Herzberg,Molecular Spectra and Molecular Structure, Vol. 1, Van Nostrand Reinhold, New York (1950).

    Google Scholar 

  29. J. Brzozowski, P. Bunker, N. Elander, and P. Erman,Astrophys. J. 207, 414 (1976).

    Google Scholar 

  30. I. Kovàcs,Rotational Structures in the Spectra of Diatomic Molecules, Akademia Kiado, Budapest (1969).

    Google Scholar 

  31. M. J. Linevsky,J. Chem. Phys. 47, 3485 (1967).

    Google Scholar 

  32. E. H. Fink and K. H. Welge,J. Chem. Phys. 46, 4315 (1967).

    Google Scholar 

  33. J. E. Germain,Catalyse Hétérogène, Nomographies Dunod, Dunod, Paris (1959), p. 93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meubus, P., Lange, H. & Jean, G. Methane polymerization with a hollow cathode: Influence of the cathode metal. Plasma Chem Plasma Process 9, 527–543 (1989). https://doi.org/10.1007/BF01023918

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01023918

Key Words

Navigation