Skip to main content
Log in

Electrical conductivity measurements of aqueous sodium chloride solutions to 600°C and 300 MPa

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Electrical conductance measurements of dilute (<0.1 mol-kg−1) aqueous NaCl solutions were made primarily to quantify the degree of ion association which increases with increasing temperature and decreasing solvent density. These measurements were carried out at temperatures from 100 to 600°C and pressures up to 300 MPa with a modified version of the apparatus used previously in the high temperature study in this laboratory. Particular emphasis was placed on conditions close to the critical temperaturelpressure region of water, i.e., at 5° intervals from 370 to 400°C. The results verify previous findings that the limiting equivalent conductance Ao of NaCl increases linearly with decreasing density from 0.75 to 0.3 g-cm−1 and also with increasing temperature from 100 to 350°C. Above 350°C. Ao is virtually temperature independent. The logarithm of the molal association constant as calculated exclusively from the data≥400°C is represented as a function of temperature (Kelvin) and the logarithm of the density of water (g-cm−3) as follows:

$$log K_m = 0.997 - 650.07/T - (10.420 - 2600.5/T)log\rho _w $$

Note that this function also provides a good representation of the log Km values obtained from 350 to 395°C at densities greater than ca. 0.6 g-cm−3. More precise conductance data now available in the literature suggest a systematic error of unknown origin may exist in the data obtained at lower densities in this region. The relevant thermodynamics quantities derived from differentiation of this equation with respect to temperature and pressure are listed in the text.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Simonson and D. A. Palmer,Geochim. Cosmochim. Acta,57, 1 (1993).

    Google Scholar 

  2. H. F. Holmes and R. E. Mesmer,J. Chem. Thermodynamics 15, 709 (1983).

    Google Scholar 

  3. H. F. Holmes, R. H. Busey, J. M. Simonson, R. E. Mesmer, D. G. Archer, and R. H. Wood,J. Chem. Thermodynamics 19, 863 (1987).

    Google Scholar 

  4. A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 684 (1968).

    Google Scholar 

  5. W. L. Marshall and E. U. Franck,J. Phys. Chem. Ref. Data 10, 295 (1981).

    Google Scholar 

  6. K. S. Pitzer,J. Phys. Chem. 87, 1120 (1983).

    Google Scholar 

  7. E. U. Franck, J. E. Savolainen, and W. L. Marshall,Rev. Sci. Instr. 33, 115 (1962).

    Google Scholar 

  8. Y. C. Wu, F. Koch, W. J. Hamer, and R. L. Kay,J. Solution Chem. 16, 985 (1987).

    Google Scholar 

  9. Y. C. Wu and W. F. Koch,J. Solution. Chem. 20, 391 (1991).

    Google Scholar 

  10. G. C. Bignold, A. D. Brewer, and B. Heam,Trans. Faraday Soc.,67, 2419 (1971).

    Google Scholar 

  11. W. L. Marshall,J. Chem. Eng. Data,11, 221 (1987).

    Google Scholar 

  12. P. G. Hill,J. Phys. Chem. Ref. Data,19, 1233 (1990).

    Google Scholar 

  13. J. D. Frantz and W. L. Marshall,Am. J. Sci. 282, 1666 (1982).

    Google Scholar 

  14. M. Uematsu and E. U. Franck,J. Phys. Chem. Ref. Data,9, 1291 (1980).

    Google Scholar 

  15. A. S. Quist and W. L. Marshall,J. Phys. Chem.,69, 3165 (1965).

    Google Scholar 

  16. K. H. Dudziak and E. U. Franck,Ber. Bunsenges. Phys. Chem. 70, 1120 (1966).

    Google Scholar 

  17. L. Haar, J. S. Gallagher, and G. S. Kell,Steam Tables, Hemisphere Publishing Corp., New York, 1984.

    Google Scholar 

  18. G. H. Zimmerman, PhD Thesis, University of Delaware, 1993.

  19. R. E. Mesmer, W. L. Marshall, D. A. Palmer, J. M. Simonson, and H. F. Holmes,J. Solution Chem. 17, 699 (1988).

    Google Scholar 

  20. D. Pearson, C. S. Copeland, and S. W. Benson,J. Am. Chem. Soc. 85, 1044 (1963).

    Google Scholar 

  21. J. K. Fogo, S. W. Benson, and C. S. Copeland,J. Chem. Phys. 22, 212 (1954).

    Google Scholar 

  22. E.L. Shock, E. H. Oelkers, J. W. Johnson, D. A. Sverjensky, and H. C. Helgeson,J. Chem. Soc. Faraday Trans. 88, 803 (1992).

    Google Scholar 

  23. L. B. Yeatts, L. A. Dunn, and W. L. Marshall,J. Phys. Chem. 75, 1099 (1971).

    Google Scholar 

  24. P. C. Ho and D. A. Palmer, unpublished results.

  25. J. D. Frantz and W. L. Marshall,Am. J. Sci. 284, 651 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, P.C., Palmer, D.A. & Mesmer, R.E. Electrical conductivity measurements of aqueous sodium chloride solutions to 600°C and 300 MPa. J Solution Chem 23, 997–1018 (1994). https://doi.org/10.1007/BF00974100

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00974100

Key Words

Navigation