Skip to main content
Log in

A Comprehensive Review of Saline Water Correlations and Data-Part I: Thermodynamic Properties

  • Review-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Thermodynamic properties in a format of correlations, models, and data are reviewed for saline water. Even though seawater properties were reviewed in the literature, different essential parametric conditions are considered in this paper, such as multi-component (ions) concentration and high salinity, in addition to temperature and pressure. The thermodynamic properties are tabulated to include solution concentration, density, specific heat capacity, latent heat of vaporization, boiling point elevation, vapor pressure, specific enthalpy, and specific entropy. Other thermophysical properties such as viscosity, surface tension, electrical conductivity, thermal conductivity, osmotic coefficient, activity coefficient, and thermal expansivity are discussed in the accompanying part II paper. This part aims at being a comprehensive reference source of these properties for all the saline water types, in which Na and Cl are the major constituents, including brackish water, seawater, and high saline water from basins, lakes, produced water from oil and gas hydraulic fracturing, and so on. The correlations are listed in tabular forms and evaluated in terms of accuracy against available experimental data. Guidelines for selecting some correlations are discussed as well. New correlations with high accuracy for NaCl-specific enthalpy and specific entropy are proposed for a salinity range of 0–260 g/kg (0–6 molal) at ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C :

Concentration, mol/m3

C P :

Specific heat, J/kg K

C Pw :

Partial heat capacity of water in solution, J/kg K or cal/g K

ϕ C P :

Apparent heat capacity, J/kg K

co, c1, c2, c3, c4 :

Constants

D :

Static dielectric constant of solvent

d s :

Density of salt, kg/m3

e :

Unit electrical charge, 1.602 × 10−19 C

F :

Faraday’s constant, 9.649 × 104 C/mol

G ex :

Excess Gibbs energy, kJ

g :

Specific Gibbs energy, kJ/kg

h :

Enthalpy of saline water, kJ/kg

ϕh, ϕL :

Apparent enthalpy, kJ/kg

\(\bar{h}\) :

Partial enthalpy, kJ/kg

I :

Ionic strength

K :

Salt-dependent parameter

K f :

Compressibility factor

K ATM :

Compressibility factor at atmospheric pressure

K b :

Boltzmann constant, 1.3805 × 10−23 J/K

L :

Latent heat of vaporization, kJ/kg

m :

Molality, mol/kg

m i :

Molality of ith ion, mol/kg

M w :

Molar mass of water, g/mol

M i :

Molar mass of ionic species, g/mol

N A :

Avogadro number, 6.023 × 1023

n :

Number of ions

P :

Pressure, MPa or bar

p :

Vapor pressure, MPa or bar

p w :

Vapor pressure of pure water, MPa or bar

R :

Universal gas constant, kJ/mol.K

S :

Salinity, g/kg

s :

Specific entropy, J/kg.K

\(\bar{s}\) :

Partial specific entropy, J/kg.K

ϕ s :

Apparent specific entropy, J/kg.K

T :

Temperature, oC or K

u :

Ionic mobility, m2/V.s

V :

Specific volume, m3/kg

v :

Molar volume, m3/mol

x :

Mole fraction

Z :

Ionic charge, C

ATM:

Atmospheric pressure and temperature

BPE:

Boiling point elevation

ED:

Electrodialysis

EDR:

Electrodialysis reversal

FO:

Forward osmosis

HDH:

Humidification–dehumidification

MD:

Membrane distillation

MSE:

Mean square error

MSF:

Multi-stage flash desalination

MEE:

Multi-effect evaporation

MVC:

Mechanical vapor compression

ppm:

Parts per million

ppt:

Parts per thousand

ppb:

Parts per billion

RO:

Reverse osmosis

STP:

Standard temperature and pressure

α :

Empirical factor for density model

λ :

Equivalent conductivity, S/m

µ :

Viscosity of saline water, kg/m s

ρ :

Density of saline water, kg/m3

Φ :

Osmotic coefficient

A:

Anion

C:

Cation

e:

Electrical

f:

Liquid form

g:

Gaseous/vapor form

R:

Relative

S:

Salt

W:

Water

References

  1. Shiklomanov, I.A.; Rodda, J.C.; Babkin, V.I.; Penkova, N.V.; Georgievsry, V.Y.; Zaretskaya, I.P.; Izmailova, A.V.; Balonishnikova, J.A.; Grigorkina, T.E.; Grube, T.V.; Skoryatina, E.L.; Tsytsenko, V.K.; Yunitsyna, V.P.: World water resources at the beginning of the twenty-first century. (2004) https://doi.org/10.5860/choice.41-4063

  2. Vörösmarty, C.J.; Sullivan, C.A.; Davies, P.M.; Bunn, S.E.; McIntyre, P.B.; Prusevich, A.; Liermann, C.R.; Gessner, M.O.; Dudgeon, D.; Green, P.; Glidden, S.: Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010). https://doi.org/10.1038/nature09440

    Article  Google Scholar 

  3. Lv, H.; Wang, Y.; Wu, L.; Hu, Y.: Numerical simulation and optimization of the flash chamber for multi-stage flash seawater desalination. Desalination 465, 69–78 (2019). https://doi.org/10.1016/j.desal.2019.04.032

    Article  Google Scholar 

  4. Ali, E.; Orfi, J.; AlAnsary, H.; Lee, J.G.; Alpatova, A.; Ghaffour, N.: Integration of multi effect evaporation and membrane distillation desalination processes for enhanced performance and recovery ratios. Desalination 493, 114619 (2020). https://doi.org/10.1016/j.desal.2020.114619

    Article  Google Scholar 

  5. Narayan, G.P.; St. John, M.G.; Zubair, S.M.; Lienhard, J.H.: Thermal design of the humidification dehumidification desalination system: an experimental investigation. Int. J. Heat Mass Transf. 58, 740–748 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.11.035

    Article  Google Scholar 

  6. Qasem, N.A.A.; Zubair, S.M.: Performance evaluation of a novel hybrid humidification-dehumidification (air-heated) system with an adsorption desalination system. Desalination 461, 37–54 (2019). https://doi.org/10.1016/j.desal.2019.03.011

    Article  Google Scholar 

  7. Qasem, N.; Imteyaz, B.; Antar, M.A.: Investigation of the effect of the top and the bottom temperatures on the performance of humidification dehumidification desalination systems. Mech. Eng. Congr. Expo. Proc., ASME Int (2016). https://doi.org/10.1115/imece201667985

    Book  Google Scholar 

  8. Qasem, N.A.A.; Zubair, S.M.; Abdallah, A.M.; Elbassoussi, M.H.; Ahmed, M.A.: Novel and efficient integration of a humidification-dehumidification desalination system with an absorption refrigeration system. Appl. Energy 263, 114659 (2020). https://doi.org/10.1016/j.apenergy.2020.114659

    Article  Google Scholar 

  9. Lawal, D.U.; Qasem, N.A.A.: Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: a critical review. Renew. Sustain. Energy Rev. (2020). https://doi.org/10.1016/j.rser.2020.109817

    Article  Google Scholar 

  10. Mitra, S.; Thu, K.; Saha, B.B.; Dutta, P.: Performance evaluation and determination of minimum desorption temperature of a two-stage air cooled silica gel/water adsorption system. Appl. Energy 206, 507–518 (2017). https://doi.org/10.1016/j.apenergy.2017.08.198

    Article  Google Scholar 

  11. Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N.: Reverse osmosis desalination: a state-of-the-art review. Desalination 459, 59–104 (2019). https://doi.org/10.1016/j.desal.2019.02.008

    Article  Google Scholar 

  12. Generous, M.M.; Qasem, N.A.A.; Zubair, S.M.: Exergy-based entropy-generation analysis of electrodialysis desalination systems. Energy Convers. Manag. (2020). https://doi.org/10.1016/j.enconman.2020.113119

    Article  Google Scholar 

  13. Qasem, N.A.A.; Zubair, S.M.; Qureshi, B.A.; Generous, M.M.: The impact of thermodynamic potentials on the design of electrodialysis desalination plants. Energy Convers. Manag. 205, 112448 (2020). https://doi.org/10.1016/j.enconman.2019.112448

    Article  Google Scholar 

  14. Qasem, N.A.A.; Qureshi, B.A.; Zubair, S.M.: Improvement in design of electrodialysis desalination plants by considering the Donnan potential. Desalination 441, 62–76 (2018). https://doi.org/10.1016/j.desal.2018.04.023

    Article  Google Scholar 

  15. Khalifa, A.E.; Alawad, S.M.; Antar, M.A.: Parallel and series multistage air gap membrane distillation. Desalination 417, 69–76 (2017). https://doi.org/10.1016/j.desal.2017.05.003

    Article  Google Scholar 

  16. Atab, M.S.; Smallbone, A.J.; Roskilly, A.P.: An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation. Desalination. 397, 174–184 (2016). https://doi.org/10.1016/j.desal.2016.06.020

    Article  Google Scholar 

  17. Kwon, K.; Han, J.; Park, B.H.; Shin, Y.; Kim, D.: Brine recovery using reverse electrodialysis in membrane-based desalination processes. Desalination 362, 1–10 (2015). https://doi.org/10.1016/j.desal.2015.01.047

    Article  Google Scholar 

  18. Chehayeb, K.M.; Farhat, D.M.; Nayar, K.G.; Lienhard, J.H.V.: Optimal design and operation of electrodialysis for brackish-water desalination and for high-salinity brine concentration. Desalination. 420, 167–182 (2017). https://doi.org/10.1016/j.desal.2017.07.003

    Article  Google Scholar 

  19. Mitra, S.; Srinivasan, K.; Kumar, P.; Murthy, S.S.; Dutta, P.: Solar driven adsorption desalination system. Energy Procedia. 49, 2261–2269 (2013). https://doi.org/10.1016/j.egypro.2014.03.239

    Article  Google Scholar 

  20. Sharqawy, M.H.; Lienhard, J.H.V.; Zubair, S.M.: Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 29, 355–355 (2011). https://doi.org/10.5004/dwt.2011.2947

    Article  Google Scholar 

  21. Nayar, K.G.; Sharqawy, M.H.; Banchik, L.D.; Lienhard, J.H.V.: Thermophysical properties of seawater: a review and new correlations that include pressure dependence. Desalination. 390, 1–24 (2016). https://doi.org/10.1016/j.desal.2016.02.024

    Article  Google Scholar 

  22. Generous, M.M.; Qasem, N.A.A.; Zubair, S.M.: The significance of modeling electrodialysis desalination using multi-component saline water. Desalination 482, 114347 (2020). https://doi.org/10.1016/j.desal.2020.114347

    Article  Google Scholar 

  23. Thiel, G.P.; Lienhard, J.H.V.: Treating produced water from hydraulic fracturing: composition effects on scale formation and desalination system selection. Desalination. 346, 54–69 (2014). https://doi.org/10.1016/j.desal.2014.05.001

    Article  Google Scholar 

  24. Zemaitis, J.F.; Clark, D.M.; Rafal, M.; Scrivner, N.C.: Handbook of aqueous electrolyte thermodynamics. Wiley, Hoboken (1986)

    Book  Google Scholar 

  25. Ghalami-Choobar, B.: Thermodynamic study of the ternary mixed electrolyte (NaCl + NiCl2 + H2O) system: application of Pitzer model with higher-order electrostatic effects. J. Chem. Thermodyn. 43, 901–907 (2011). https://doi.org/10.1016/j.jct.2011.01.007

    Article  Google Scholar 

  26. Jaworski, Z.; Czernuszewicz, M.; Gralla, Ł.: A comparative study of thermodynamic electrolyte models applied to the solvay soda system. Chem. Process Eng. Inz. Chem. I Proces. 32, 135–154 (2011). https://doi.org/10.2478/v10176-011-0011-9

    Article  Google Scholar 

  27. Chen, L.; Kang, Q.; Tang, Q.; Robinson, B.A.; He, Y.L.; Tao, W.Q.: Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation. Int. J. Heat Mass Transf. 85, 935–949 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.035

    Article  Google Scholar 

  28. PHREEQC: (2019). https://www.usgs.gov/software/phreeqc-version-3/

  29. OLI: (2019). https://www.olisystems.com/technology

  30. Millero, F.J.; Waters, J.; Woosley, R.; Huang, F.; Chanson, M.: The effect of composition on the density of Indian Ocean waters, Deep. Res. Part I Oceanogr. Res. Pap. 55, 460–470 (2008). https://doi.org/10.1016/j.dsr.2008.01.006

    Article  Google Scholar 

  31. Poisson, A.; Brunet, C.; Brun-Cottan, J.C.: Density of standard seawater solutions at atmospheric pressure. Mar. Geod. 5, 363–365 (1982). https://doi.org/10.1080/15210608209379434

    Article  Google Scholar 

  32. Millero, F.; Huang, F.: The density of seawater as a function of salinity (5 to 70 g kg−1) and temperature (273.15 to 363.15 K). Ocean Sci. 27, 91–110 (2009). https://doi.org/10.1017/s0373463300025200

    Article  Google Scholar 

  33. Sun, H.; Feistel, R.; Koch, M.; Markoe, A.: New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid. Deep. Res. Part I Oceanogr. Res. Pap. 55, 1304–1310 (2008). https://doi.org/10.1016/j.dsr.2008.05.011

    Article  Google Scholar 

  34. Lam, E.J.; Alvarez, M.N.; Galvez, M.E.; Alvarez, E.B.: A model for calculating the density of aqueous multicomponent electrolyte solutions. J. Chil. Chem. Soc. 53, 1404–1409 (2008). https://doi.org/10.4067/S0717-97072008000100015

    Article  Google Scholar 

  35. Schmidt, H.; Seitz, S.; Hassel, E.; Wolf, H.: The density-salinity relation of standard seawater. Ocean Sci. 14, 15–40 (2018). https://doi.org/10.5194/os-14-15-2018

    Article  Google Scholar 

  36. Pátek, J.; Hrub, J.; Klomfar, J.; Součková, M.; Harvey, A.H.: Reference correlations for thermophysical properties of liquid water at 0.1 MPa. J. Phys. Chem. Ref. Data. 38, 21–29 (2009). https://doi.org/10.1063/1.3043575

    Article  Google Scholar 

  37. Laliberté, M.; Cooper, W.E.: Model for calculating the density of aqueous electrolyte solutinos. J. Chem. Eng. Data 49, 1141–1151 (2004). https://doi.org/10.1021/je0498659

    Article  Google Scholar 

  38. Rowe, A.M.; Chou, J.C.S.: Pressure-volume-temperature-concentration relation of aqueous NaCI solutions. J. Chem. Eng. Data 15, 61–66 (1970). https://doi.org/10.1021/je60044a016

    Article  Google Scholar 

  39. Numbere, D.; Brigham, W.E.; Standing, M.B.: Correlation for physical properties of petroleum reservoir brines. United States (1977). https://doi.org/10.2172/6733264

    Article  Google Scholar 

  40. Leyendekkers, J.V.: Prediction of the heat capacities of seawater and other multicomponent solutions from the Tammann-Tait-Gibson model. Mar. Chem. 9, 25–35 (1980). https://doi.org/10.1016/0304-4203(80)90004-3

    Article  Google Scholar 

  41. El-Dessouky, H.T.; Ettouney, H.M.: Fundamentals of salt water. Desalination (2002). https://doi.org/10.1016/b978-0-444-50810-2.x5000-3

    Article  Google Scholar 

  42. Isdale, J.D.; Morris, R.: Physical properties of sea water: density. Numer. Data Funct. Relationships Sci. Technol. (1986). https://doi.org/10.1007/10201933_43

    Article  Google Scholar 

  43. UNESCO: Background papers and supporting data on the practical salinity scale, UNESCO. Tech. Pap. Mar. Sci. 37, 1–144 (1981)

    Google Scholar 

  44. Sun, H.; Koch, M.; Markoe, A.; Feistel, R.: New equations for density, potential temperature and entropy of a saline thermal fluid, (2008). https://www.researchgate.net/publication/268418536_NEW_EQUATIONS_FOR_DENSITY_POTENTIAL_TEMPERATURE_AND_ENTROPY_OF_A_SALINE_THERMAL_FLUID

  45. Tanaka, M.; Girard, G.; Davis, R.; Peuto, A.; Bignell, N.: Recommended table for the density of water between 0 and 40 °C based on recent experimental reports. Metrologia. 38, 301–309 (2001). https://doi.org/10.1088/0026-1394/38/4/3

    Article  Google Scholar 

  46. UNESCO: Background papers and supporting data on the international equation of sate of sea water, (1980)

  47. Fisher, F.H.; Dial, O.E.: Equation of state of water and seawater. J. Acoust. Soc. Am. 45, 325 (2005). https://doi.org/10.1121/1.1971921

    Article  Google Scholar 

  48. Darros-Barbosa, R.; Balaban, M.O.; Teixeira, A.A.: Temperature and concentration dependence of heat capacity of model aqueous solutions. Int. J. Food Prop. 6, 239–258 (2003). https://doi.org/10.1081/JFP-120017845

    Article  Google Scholar 

  49. Xue, G.; Liu, Y.; Si, W.; Ji, C.; Guo, F.; Li, Z.: Energy recovery and conservation utilizing seawater pressure in the working process of Deep-Argo profiling float. Energy. 195, 116845 (2020). https://doi.org/10.1016/j.energy.2019.116845

    Article  Google Scholar 

  50. Leduc, P.-A.; Desnoyers, J.E.: Apparent molal heat capacities and volumes of tetrabutylammonium carboxylates and related solutes in water at 25 °C. Can. J. Chem. 51, 2993–2998 (2006). https://doi.org/10.1139/v73-445

    Article  Google Scholar 

  51. Bromley, L.A.; Desaussure, V.A.; Cupp, J.C.; Wright, J.S.: Heat capacities of sea water solutions at salinities of 1 to 12% and temperatures of 2° to 80°. J. Chem. Eng. Data 12, 202–206 (1967). https://doi.org/10.1021/je60033a013

    Article  Google Scholar 

  52. Chou, J.C.S.: Thermodynamic Properties of Aqueous Sodium Chloride Solutions from 32 To 350°F, Georgia Institute of Technology, (1968)

  53. Bromley, L.A.; Diamond, A.E.; Salami, E.; Wilkins, D.G.: Heat capacities and enthalpies of sea salt solutions to 200 °C. J. Chem. Eng. Data 15, 246–253 (1970). https://doi.org/10.1021/je60045a038

    Article  Google Scholar 

  54. Ghallab, A.O.; Elnahas, M.H.: Determination of physical properties of saline water and different pressure and concentrations. In: Proceedings of I International Science Conference “INDUSTRY 4.0,” pp 109–112 (2016)

  55. Chou, J.C.S.: Thermal Properties of Sea Water, (1971)

  56. Jamieson, D.T.; Tudhope, J.S.; Morris, R.; Cartwright, G.: Physical properties of sea water solutions: heat capacity. Desalination 7, 23–30 (1969). https://doi.org/10.1016/S0011-9164(00)80271-4

    Article  Google Scholar 

  57. Cox, R.A.; Smith, N.D.: The specific heat of sea water. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 252, 51–62 (1959). https://doi.org/10.1098/rspa.1959.0136

    Article  Google Scholar 

  58. Millero, F.J.; Perron, G.; Desnoyers, J.E.: Heat capacity of seawater solutions from 5 to 35 °C and 0.5 to 22‰ chlorinity. J. Geophys. Res. 78, 4499–4507 (1973). https://doi.org/10.1029/jc078i021p04499

    Article  Google Scholar 

  59. Wagner, W.; Pruß, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31(2002), 387–535 (1995). https://doi.org/10.1063/1.1461829

    Article  Google Scholar 

  60. Wagner, W.; Pruss, A.: Revised Release on the (IAPWS) Formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31(2002), 387–535 (1995). https://doi.org/10.1158/0008-5472.CAN-09-0634

    Article  Google Scholar 

  61. Bromley, L.A.: Heat capacities of sea water solutions at salinities of 1 to 12% and temperatures of 2 to 80 °C, pp 202–206 (n.d.)

  62. Chou, J.C.S.; Rowe, A.M.: Enthalpies of aqueous sodium chloride solutions from 32 to 350 °F. Desalination 6, 105–115 (1969). https://doi.org/10.1016/S0011-9164(00)80014-4

    Article  Google Scholar 

  63. Millero, F.J.: The thermodynamics of seawater part II: thermochemical properties. Ocean Sci. Eng. 8, 1–40 (1983)

    Article  Google Scholar 

  64. Qian, J.W.; Privat, R.; Jaubert, J.N.; Duchet-Suchaux, P.: Enthalpy and heat capacity changes on mixing: fundamental aspects and prediction by means of the PPR78 cubic equation of state. Energy Fuels 27, 7150–7178 (2013). https://doi.org/10.1021/ef401605c

    Article  Google Scholar 

  65. Kukulka, D.J.; Gebhart, B.; Mollendorf, J.C.: Thermodynamic and transport properties of pure and saline water. Adv. Heat Transf. 18, 325–363 (1987). https://doi.org/10.1016/S0065-2717(08)70121-7

    Article  Google Scholar 

  66. Feistel, R.: A Gibbs function for seawater thermodynamics for − 6 to 80 °C and salinity up to 120 g kg−1, Deep. Res. Part I Oceanogr. Res. Pap. 55, 1639–1671 (2008). https://doi.org/10.1016/j.dsr.2008.07.004

    Article  Google Scholar 

  67. Moggia, E.: Generalized Quasi-Random Lattice model for electrolyte solutions: mean activity and osmotic coefficients, apparent and partial molal volumes and enthalpies. Fluid Phase Equilib. 479, 69–84 (2019). https://doi.org/10.1016/j.fluid.2018.09.008

    Article  Google Scholar 

  68. Pitzer, K.S.; Peiper, J.C.; Busey, R.H.: Thermodynamic properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 13, 1–102 (1984). https://doi.org/10.1063/1.555709

    Article  Google Scholar 

  69. Pitzer, K.S.: A thermodynamic model for aqueous solutions of liquid-like density. Rev. Miner. 17, 97–142 (1987)

    Google Scholar 

  70. Qasem, N.A.A.; Generous, M.M.; Qureshi, B.A.; Zubair, S.M.: A comprehensive review of saline water correlations and data—Part II: thermophysical properties. Arab. J. Sci, Eng (2020)

    Google Scholar 

  71. Bromley, L.A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313–320 (1973). https://doi.org/10.1002/aic.690190216

    Article  Google Scholar 

  72. Cooper, J.R.; Mary, Q.; Road, M.E.; Associates, S.I.: The International Association for the Properties of Water and Steam Release (IAPWS-2008) on the formulation for the the thermodynamic properties of water and steam, pp 1–19, (2008)

  73. Connors, D.N.: On the enthalpy of seawater. Limnol. Oceanogr. 15, 587–594 (1970). https://doi.org/10.4319/lo.1970.15.4.0587

    Article  Google Scholar 

  74. IAPWS-1992: The International Association for the properties of water and steam: revised supplementary release on saturation properties of ordinary water substance, 10, 1–7 (1992). http://iapws.org/relguide/supsat.pdf

  75. Slesarenko, V.; Shtim, A.: Determination of seawater enthalpy and entropy during the calculation of thermal desalination plants. Desalination 71, 203–210 (1989). https://doi.org/10.1016/0011-9164(89)80009-8

    Article  Google Scholar 

  76. Cooper, J.R.; Dooley, R.B.: The International Association for the properties of water and steam for the viscosity of ordinary water substance, Int. Organ. (2008)

  77. Hunter, J.B.; Bliss, H.: Thermodynamic properties of aqueous salt solutions. Ind. Eng. Chem. 36, 945–953 (2005). https://doi.org/10.1021/ie50418a019

    Article  Google Scholar 

  78. Sahu, P.; Krishnaswamy, S.; Ponnani, K.; Pande, N.K.: A thermodynamic approach to selection of suitable hydrate formers for seawater desalination. Desalination 436, 144–151 (2018). https://doi.org/10.1016/j.desal.2018.02.001

    Article  Google Scholar 

  79. Valderrama, J.O.; Campusano, R.A.; Toro, A.S.: Correlation and prediction of saline solution properties for their use in mineral processing using artificial neural networks. J. Water Reuse Desalin. 5, 454–464 (2015). https://doi.org/10.2166/wrd.2015.132

    Article  Google Scholar 

  80. Aminian, A.: Prediction of temperature elevation for seawater in multi-stage flash desalination plants using radial basis function neural network. Chem. Eng. J. 162, 552–556 (2010). https://doi.org/10.1016/j.cej.2010.05.060

    Article  Google Scholar 

  81. Yue, C.; Wang, B.; Zhu, B.: Thermal analysis for the evaporation concentrating process with high boiling point elevation based exhaust waste heat recovery. Desalination 436, 39–47 (2018). https://doi.org/10.1016/j.desal.2018.02.010

    Article  Google Scholar 

  82. Al-Shammiri, M.: Evaporation rate as a function of water salinity. Desalination 150, 189–203 (2002). https://doi.org/10.1016/S0011-9164(02)00943-8

    Article  Google Scholar 

  83. Brogioli, D.; La Mantia, F.; Yip, N.Y.: Thermodynamic analysis and energy efficiency of thermal desalination processes. Desalination 428, 29–39 (2018). https://doi.org/10.1016/j.desal.2017.11.010

    Article  Google Scholar 

  84. Obille, A.: Investigating the relationship between variance of transition temperatures in an undergraduate laboratory setting, pp 48–51, (2017)

  85. Miyawaki, O.; Saito, A.; Matsuo, T.; Nakamura, K.: Activity and activity coefficient of water in aqueous solutions and their relationships with solution structure parameters. Biosci. Biotechnol. Biochem. 61, 466–469 (2009). https://doi.org/10.1271/bbb.61.466

    Article  Google Scholar 

  86. Anderson, G.S.; Miller, R.C.; Goodwin, A.R.H.: Static dielectric constants for liquid water from 300 to 350 K at pressures to 13 MPa using a new radio-frequency resonator. J. Chem. Eng. Data 45, 549–554 (2000). https://doi.org/10.1021/je9903092

    Article  Google Scholar 

  87. Xinlei, G.; Wang, X.: Calculations of freezing point depression, boiling point elevation, vapor pressure and enthalpies of vaporization of electrolyte solutions by a modified three-characteristic parameter correlation model. J. Solution Chem. 38, 1097–1117 (2009). https://doi.org/10.1007/s10953-009-9433-0

    Article  Google Scholar 

  88. Fabuss, B.M.; Korosi, A.: Boiling point elevations of sea water and its concentrates. J. Chem. Eng. Data 11, 606–609 (1966). https://doi.org/10.1021/je60031a049

    Article  Google Scholar 

  89. Bromley, L.A.; Singh, D.; Ray, P.; Sridhar, S.; Read, S.M.: Thermodynamic properties of sea salt solutions. AIChE J. (1974). https://doi.org/10.1002/aic.690200218

    Article  Google Scholar 

  90. Hakuta, T.; Goto, T.; Ishizaka, S.: Boiling point elevation of sea water. Bull. Soc. Sea Water Sci. Japan. 28, 156–161 (1974). https://doi.org/10.11457/swsj1965.28.156

    Article  Google Scholar 

  91. Araujo-Lopez, E.; Lopez-Echeverry, J.S.; Reif-Acherman, S.: The Antoine equation of state: rediscovering the potential of an almost forgotten expression for calculating volumetric properties of pure compounds. Chem. Eng. Sci. 177, 89–109 (2018). https://doi.org/10.1016/j.ces.2017.10.051

    Article  Google Scholar 

  92. Morillon, V.; Debeaufort, F.; Jose, J.; Tharrault, J.F.; Capelle, M.; Blond, G.; Voilley, A.: Water vapour pressure above saturated salt solutions at low temperatures. Fluid Phase Equilib. 155, 297–309 (1999). https://doi.org/10.1016/S0378-3812(99)00009-6

    Article  Google Scholar 

  93. Zuo, Y.-X.; Fürst, W.: Prediction of vapor pressure for nonaqueous electrolyte solutions using an electrolyte equation of state. Fluid Phase Equilib. 138, 87–104 (2002). https://doi.org/10.1016/s0378-3812(97)00145-3

    Article  Google Scholar 

  94. Han, Z.: An equation of state for nonaqueous electrolyte solutions. J. Chem. Pharm. Res. 4, 3861–3864 (2012)

    Google Scholar 

  95. Shiah, I.M.; Tseng, H.C.: A vapor pressure model for aqueous electrolyte solutions based on mean spherical approximation. Fluid Phase Equilib. 99, 75–85 (1994). https://doi.org/10.1016/0378-3812(94)80023-5

    Article  Google Scholar 

  96. Cisternas, L.A.; Lam, E.J.: A analytic correlation of vapour pressure of aqueous and non-aqueous solutions of single and mixed electrolytes. Fluid Phase Equilib. 53, 243–249 (1989). https://doi.org/10.1016/0378-3812(89)80092-5

    Article  Google Scholar 

  97. Herington, E.F.G.: Pressure, volume and temperature relationships. In: Recommentation Reference Material Realizzation Physicochemtry Propostion, Pergamon Press, New York (1975)

  98. Kientzler, C.F.; Arons, A.B.: Vapor pressure of sea salt solutions, Technical Report No. 2, (1966). https://doi.org/10.1001/jamadermatol.2014.3593

  99. Emerson, W.H.; Jamieson, D.T.: Some physical properties of sea water in various concentrations. Desalination 3, 213–224 (1967). https://doi.org/10.1016/0011-9164(67)80012-2

    Article  Google Scholar 

  100. Robinson, R.A.: The vapour pressure and osmotic equivalence of sea water. J. Mar. Biol. Assoc. United Kingdom. 33, 449–455 (1954). https://doi.org/10.1017/S0025315400008468

    Article  Google Scholar 

  101. Wright, J.; Colling, A.: The seawater solution. Seawater Compos. Prop. Behav. 10, 85–127 (1995). https://doi.org/10.1016/b978-0-08-042518-4.50011-6

    Article  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the support provided by King Fahd University of Petroleum & Minerals through the project IN171048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed M. Zubair.

Appendices

Appendix A. Saline Water Concentration

1.1 A.1. Salinity

Salinity can be defined as masses, in a gram, of all solutes per kg of solution. Therefore, the concentration in terms of salinity can be expressed as:

$${\text{Salinity}} = \frac{{\sum {\text{Mass}}\;{\text{of}}\;{\text{the}}\;{\text{solute}}}}{{{\text{Mass}}\;{\text{of}}\;{\text{the}}\;{\text{solution}}}}$$

The example in Table 10 below calculates seawater salinity from its compositions.

Table 10 Example to estimate salinity form standard seawater composition

Therefore, the salinity of seawater is 35.169 g/kg based on the data listed in Table 10. The same procedure can be applied to determine the salinity of any solution with any given quantity of impurities.

1.2 A.2. Molarity and Molality

Molarity or mole concentration is the ratio of moles of solute per volume in a liter of solution. It is represented by the “M.” It can be expressed as:

$${\text{Molarity}}\;\left( M \right) = \frac{{{\text{Moles}}\;{\text{of}}\;{\text{Solute}}}}{{{\text{Volume}}\;{\text{of}}\;{\text{Solution}}}}$$

In the case of a multi-species solution, the molarity of each component is determined separately. The molarity is calculated by using molarity and charge of each component, as expressed in the following relation:

$$M = \frac{1}{2}\mathop \sum \limits_{i = 1}^{n} M_{i} Z_{i}^{2}$$
(A.2.1)

where \(M_{i}\) and \(Z_{i}\) are molarity and charge of a given component.

Molality is the ratio of moles of solute per kg of solvent (water). It is denoted by “m” and written as:

$${\text{Molality}}\;\left( m \right) = \frac{{{\text{Moles}}\;{\text{of}}\;{\text{Solute}}}}{{{\text{Mass}}\;{\text{of}}\;{\text{solvent}}}}$$

An example to calculate the molality and molarity of seawater based on data listed in Table 10 is as follows:

The molar mass of seawater = 58.44 g/mol

Molality (m) = 35.169/58.44 = 0.6 mol/kg (molal)

Density of seawater (ρsw) = 1.025 kg/Liter

Molarity (M) = 0.6 × 1.025 = 0.615 mol/Liter

Appendix B. Data

See Tables 11, 12, 13, 14, 15, 16.

Table 11 Composition of saline water [101]
Table 12 Ionic volumes and values of \(\alpha_{i}\) at 298.15 K for Lam et al. [34] density model
Table 13 Values of constants c0 to c4 for Laliberte correlation [96]
Table 14 Constants used in modified Debye-Hϋckel calculation of heat capacities [71]
Table 15 Values of As, Bs, Cs, Ds and Es [96]
Table 16 K-values

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Generous, M.M., Qasem, N.A.A., Qureshi, B.A. et al. A Comprehensive Review of Saline Water Correlations and Data-Part I: Thermodynamic Properties. Arab J Sci Eng 45, 8817–8876 (2020). https://doi.org/10.1007/s13369-020-05019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05019-y

Keywords

Navigation