Skip to main content
Log in

Range and range straggling of oxygen implanted into silicon at energies between 2 and 20 MeV

  • Contributed Papers
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

Oxygen profiles in silicon implanted with energies between 2 and 20 MeV by means of a Tandem accelerator have been investigated with a microprobe after bevelling the sample surface. It is shown that the measured profiles correspond to the implantation profiles when the microprobe is operated with a well focussed 2 keV electron beam. The projected ion ranges and the profiles thus obtained are compared with theoretical profiles which have been calculated by a Monte Carlo simulation of the stopping procedure. Takingk=1.30k LSS for the electronic stopping coefficient in the LSS region up to 2.55 MeV and a constant value of 162 eV/Å for the electronic stopping at higher energies the calculation yields satisfactory range estimates, whereas the range straggling is systematically too small up to 13% in comparison with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D.Wilson, L.G.Haggmark, J.P.Biersack: Phys. Rev.B15, 2458–2468 (1977)

    Article  ADS  Google Scholar 

  2. V.Subrahmanyam, M.Kaplan: Phys. Rev.142, 174–178 (1966)

    Article  ADS  Google Scholar 

  3. M.Kaplan, J.L.Richards: Phys. Rev.145, 153–157 (1966)

    Article  ADS  Google Scholar 

  4. K.Güttner, S.Hofmann, D.Marx, G.Münzenberg, F.Nickel: Nucl. Instrum. Methods.146, 413–417 (1977)

    Article  Google Scholar 

  5. T.E.Pierce, M.Blann: Phys. Rev.173, 390–405 (1968)

    Article  ADS  Google Scholar 

  6. D.Ward, R.L.Graham, J.S.Geiger: Can. J. Phys.50, 2302–2312 (1972).

    ADS  Google Scholar 

  7. J.S.Forster, D.Ward, H.R.Andrews, G.C.Ball, G.J.Costa, W.G.Davies, I.V.Mitchell: Nucl. Instrum. Methods136, 349–359 (1976)

    Article  Google Scholar 

  8. B.H.Armitage, B.W.Hooton: Nucl. Instrum. Methods.58, 29–38 (1968)

    Article  Google Scholar 

  9. L.C.Northeliffe, R.F.Schilling: Nuclear Data Tables A7, 233–463 (1970)

    Article  Google Scholar 

  10. J.Lindhard, M.Scharff, H.E.Schiøtt: K. Dan. Vidensk. Selsk., Mat.-Fys. Medd.33, No. 14 (1963)

    Google Scholar 

  11. M.D.Matthews: AERE Report R-7805 (1974); AERE Report R-9166 (1978) and private communication

  12. K.F.Heidemann, H.F.Kappert: InDefects and Radiation Effects in Semiconductors (Institute of Physics, London 1979). Conf. Series No. 46, pp. 492–499

    Google Scholar 

  13. H.F.Kappert, N.Pfannkuche, K.F.Heidemann, E.teKaat: Rad. Eff. (1979, in press)

  14. H.F.Kappert, K.F.Heidemann, B.Grabe, E. te Kaat: Phys. stat. Sol. (a)47, 751–762 (1978)

    Article  Google Scholar 

  15. L.Reimer, G.PfefferkornRasterelektronenmikroskopie, 2nd ed. (Springer, Berlin, Heidelberg, New York 1977) pp. 67–69

    Google Scholar 

  16. M.Green, V.E.Cosslett: J. Phys. D1, 425–436 (1968)

    Article  ADS  Google Scholar 

  17. B.L.Henke, R.L.Elgin: Adv. x-Ray Analysis13, 639 (1968)

    Google Scholar 

  18. J.R.Young: J. Appl. Phys.27, 1 (1956)

    Article  Google Scholar 

  19. D.A.Eastham: Nucl. Instrum. Methods125, 277–283 (1975)

    Article  Google Scholar 

  20. M.Yoshida: J. Phys. Soc. Jpn.16, 44 (1961)

    Article  Google Scholar 

  21. T.Ishitana, R.Shimizu, K.Murata: Jpn. J. Appl. Phys.11, 125–133 (1972)

    Article  Google Scholar 

  22. We are grateful to J.P.Biersack for leaving a preprint on “A Monte Carlo-Computer Program for the Transport of Energetic lons in Amorphous Targets” by J.P.Biersack and L.G.Haggmark, and for private discussions

  23. J.Lindhard, V.Nielson, M.Scharff: Mat. Fys. Medd. Dan. Vid Selsk.36, No. 10 (1968)

  24. K.B.Winterbon, P.Sigmund, J.B.Sanders: Mat. Fys. Medd. Dan. Vid. Selsk.37, No. 14 (1970)

  25. O.Vollmer: Nucl. Instrum. Methods121, 373–377 (1974)

    Article  ADS  Google Scholar 

  26. G.D.Sauter, S.D.Bloom: Phys. Rev. B.6, 699–712 (1972)

    Article  ADS  Google Scholar 

  27. B.S.Yarlagadda, J.E.Robinson, W.Brandt: Phys. Rev. B17, 3473–3483 (1978)

    Article  ADS  Google Scholar 

  28. K.Inoue, T.Hirao, Y.Yaegashi, S.Takayanagi: Jpn. J. Appl. Phys.18, 367–372 (1979)

    Article  Google Scholar 

  29. M.M.R.Williams: J. Phys. D. (Appl. Phys.)11, 801–821 (1978)

    Article  ADS  Google Scholar 

  30. K.B.Winterbon: Radiat. Eff.13, 215–226 (1972);Ion Impantation Range and Energy Deposition Distribution, Vol. 2 (IFI/Plenum Data Company, New York 1975) p. 38

    Google Scholar 

  31. W.K.Hofker: Radiat. Eff.25, 205–206 (1975)

    Google Scholar 

  32. J.F.Gibbons, S.Mylroie: Appl. Phys. Lett.22, 568–569 (1973)

    Article  Google Scholar 

  33. This is a common problem connected with deep implantation profiles. Compare e.g. the data points for the skewness in the high energy region as presented in [30] with those given in W.K.Hofker, D.P.Oosthoek, N.J.Koeman, H.A.M.de Grefte: Radiat. Eff.24, 223–231 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kappert, H.F., Heidemann, K.F., Eichholz, D. et al. Range and range straggling of oxygen implanted into silicon at energies between 2 and 20 MeV. Appl. Phys. 21, 151–158 (1980). https://doi.org/10.1007/BF00900677

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00900677

PACS

Navigation