Skip to main content
Log in

Influence of the Charge State of Xenon Ions on the Depth Distribution Profile Upon Implantation into Silicon

  • NONELECTRONIC PROPERTIES OF SEMICONDUCTORS (ATOMIC STRUCTURE, DIFFUSION)
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Experimental depth distributions of the concentration of implanted xenon ions depending on their charge state and irradiation energy are presented. Xenon ions in charge states q = 1–20 and energies in the range from 50 to 400 keV are incorporated into single-crystal silicon. Irradiation is performed in the direction not coinciding with the crystallographic axes of the crystal to avoid the channeling effect. The ion fluence varies in the range of 5 × (1014–1015) ion/cm2. The irradiation by singly charged ions and investigation of the samples by Rutherford backscattering spectroscopy is performed using an HVEE acceleration complex at Moscow State University. Multiply charged ions are implanted using a FAMA acceleration complex at the Vinća Institute of Nuclear Sciences. The depth distribution profiles of the incorporated ions are found using Rutherford backscattering spectroscopy. Experimental results are correlated with computer calculations. It is shown that the average projective path of multiply charged ions in most cases is shorter when compared with the average projected path of singly charged ions and the results of computer modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Arnau, F. Aurmayr, P. M. Echenique, M. Grether, W. Heiland, J. Limburg, R. Morgenstern, P. Roncin, S. Schippers, R. Schuch, N. Stolterfoht, P. Varga, T. J. M. Zouros, and H. P. Winter, Surf. Sci. Rep. 27, 113 (1997).

    Article  ADS  Google Scholar 

  2. T. Schenkel, A. V. Hamza, A. V. Barnes, and D. H. Schneider, Progr. Surf. Sci. 61, 23 (1999).

    Article  ADS  Google Scholar 

  3. F. Aumayr and H. P. Winter, Nucl. Instrum. Methods Phys. Res., Sect. B 233, 111 (2005).

    Google Scholar 

  4. R. A. Wilhelm, E. Gruber, J. Schwestka, R. Kozubek, T. I. Madeira, J. P. Marques, J. Kobus, A. V. Krasheninnikov, M. Schleberger, and F. Aumayr, Phys. Rev. Lett. 119, 103410 (2017).

    Article  ADS  Google Scholar 

  5. N. V. Novikov and Ya. A. Teplova, Phys. Lett. A 378, 1286 (2014).

    Article  ADS  Google Scholar 

  6. Yu. A. Belkova, N. V. Novikov, and Ya. A. Teplova, Nucl. Instrum. Methods Phys. Res., Sect. B 343, 110 (2015).

    Google Scholar 

  7. V. A. Skuratov, J. O’Connell, A. S. Sohatsky, and J. Neethling, Nucl. Instrum. Methods Phys. Res., Sect. B 327, 89 (2014).

    Google Scholar 

  8. E. G. Njoroge, C. C. Theron, J. B. Malherbe, N. G. van der Berg, T. T. Hlatshwayo, and V. A. Skuratov, Nucl. Instrum. Methods Phys. Res., Sect. B 354, 249 (2015).

    Google Scholar 

  9. E. Yu Kaniukov, J. Ustarroz, D. Yakimchuk, M. N. Petrova, H. A. Terryn, V. Sivakov, and A. V. Petrov, Nanotechnology 27, 115305 (2016).

    Article  ADS  Google Scholar 

  10. Y. Chen, Z. Zhao, J. Dai, Y. Liu, H. Ma, and R. Nie, Rad. Meas. 43, s111 (2008).

    Article  Google Scholar 

  11. E. V. Gafton, G. Bulai, O. F. Caltun, S. Cervera, S. Mace, M. Trassinelli, S. Steydli, and D. Vernhet, Appl. Surf. Sci. 33036, 1 (2016).

    Google Scholar 

  12. E. Hug, S. Thibault, D. Chateigner, and L. Maunoury, Surf. Coat. Technol. 206, 5028 (2012).

    Article  Google Scholar 

  13. S. Thibault and E. Hug, Appl. Surf. Sci. 310, 311 (2014).

    Article  ADS  Google Scholar 

  14. M. Tomida, Y. Kato, and T. Asaji, Nucl. Instrum. Methods Phys. Res., Sect. B 237, 83 (2005).

    Google Scholar 

  15. G. Borsoni, N. Bechu, M. Gros-Jean, M. L. Korwin-Pawlowski, R. Laffitte, V. Le Roux, L. Vallier, N. Rochat, and C. Wyon, Microelectron. Reliab. 41, 1063 (2001).

    Article  Google Scholar 

  16. G. Borsoni, V. le Roux, R. Laffitte, S. Kerdiles, N. Bechu, L. Vallier, M. L. Korwin-Pawlowski, C. Vannuffel, F. Bertin, C. Vergnaud, A. Chabli, and C. Wyon, Solid-State Electron. 46, 1855 (2002).

    Article  ADS  Google Scholar 

  17. A. E. Ieshkin, S. E. Svyakhovskiy, and V. S. Chernysh, Vacuum 148, 272 (2018).

    Article  ADS  Google Scholar 

  18. A. E. Ieshkin, D. S. Kireev, Yu. A. Ermakov, A. S. Trifonov, D. E. Presnov, A. V. Garshev, Yu. V. Anufriev, I. G. Prokhorova, V. A. Krupenin, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 421, 27 (2018).

    Google Scholar 

  19. A. S. El-Said, R. A. Wilhelm, R. Heller, S. Akhmadaliev, and S. Fasco, Nucl. Instrum. Methods Phys. Res., Sect. B 317, 170 (2013).

    Google Scholar 

  20. A. S. El-Said, R. Heller, and S. Facsko, Nucl. Instrum. Methods Phys. Res., Sect. B 269, 901 (2011).

    Google Scholar 

  21. R. Heller, S. Facsko, R. A. Wilhelm, and W. Möller, Phys. Rev. Lett. 101, 096102 (2009).

    Article  ADS  Google Scholar 

  22. M. Tona, H. Watanabe, S. Takahashi, N. Nakamura, N. Yoshiyasu, N. M. Sakurai, T. Terui, S. Mashiko, C. Yamada, and S. Ohtani, Surf. Sci. 601, 723 (2007).

    Article  ADS  Google Scholar 

  23. B. E. O’Rourke, M. Flores, V. A. Esaulov, and Y. Yamazaki, Nucl. Instrum. Methods Phys. Res., Sect. B 229, 68 (2013).

    Google Scholar 

  24. J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 80–81, 12 (1993).

    Google Scholar 

  25. R. A. Wilhelm, E. Gruber, R. Ritter, R. Heller, S. Facsko, and F. Aumayr, Phys. Rev. Lett. 112 (15), 1 (2014).

    Article  Google Scholar 

  26. P. Ernst, R. Kozubek, L. Madaub, J. Sonntag, A. Lorke, and M. Schleberger, Nucl. Instrum. Methods Phys. Res., Sect. B 382, 71 (2016).

    Google Scholar 

  27. A. A. Shemukhin, A. V. Nazarov, Yu. V. Balakshin, and V. S. Chernysh, Nucl. Instrum. Methods Phys. Res., Sect. B 354, 274 (2015).

    Google Scholar 

  28. A. A. Shemukhin, Yu. V. Balakshin, V. S. Chernysh, S. A. Golubkov, N. N. Egorov, and A. I. Sidorov, Semiconductors 48, 517 (2014).

    Article  ADS  Google Scholar 

  29. M. Erich, M. Kokkoris, S. Fazinic, and S. Petrovic, Nucl. Instrum. Methods Phys. Res., Sect. B 381, 96 (2016).

    Google Scholar 

  30. M. Erich, M. Kokkoris, S. Fazinic, and S. Petrovic, Nucl. Instrum. Methods Phys. Res., Sect. B 416, 89 (2018).

    Google Scholar 

  31. Yu. V. Balakshin, A. A. Shemukhin, A. V. Nazarov, A. V. Kozhemyako, and V. S. Chernysh, Tech. Phys. 63, 1861 (2018).

    Article  Google Scholar 

  32. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).

    Google Scholar 

  33. M. T. Robinson, Nucl. Instrum. Methods Phys. Res., Sect. B 48, 408 (1990).

    Google Scholar 

  34. M. T. Robinson, Nucl. Instrum. Methods Phys. Res., Sect. B 67, 396 (1992).

    Google Scholar 

  35. P. Philipp, T. Wirtz, H.-N. Migeon, and H. Scherrer, Int. J. Mass Spectrom. 261, 91 (2007).

    Article  Google Scholar 

  36. P. Sigmund, Nucl. Instrum. Methods Phys. Res., Sect. B 27 (1), 1 (1987).

    Google Scholar 

  37. P. Sigmund, Nucl. Instrum. Methods Phys. Res., Sect. B 406, 391 (2017).

    Google Scholar 

  38. Y. Yamamura and H. Tawara, NIFS-DATA 23, 29 (1995).

    Google Scholar 

  39. J. F. Ziegler, Nucl. Instrum. Methods Phys. Res., Sect. B 6, 272 (1985).

    Google Scholar 

  40. A. V. Kozhemyako, Yu. V. Balakshin, A. A. Shemukhin, and V. S. Chernysh, Semiconductors 51, 745 (2017).

    Article  ADS  Google Scholar 

  41. A. A. Shemukhin, A. V. Kozhemiako, Yu. V. Balakshin, and V. S. Chernysh, J. Phys.: Conf. Ser. 917, 1 (2017).

    Google Scholar 

  42. T. Schenkel, M. A. Briere, A. V. Barnes, A. V. Hamza, K. Bethge, H. Schmidt-Bocking, and D. H. Schneider, Phys. Rev. Lett. 79, 2030 (1997).

    Article  ADS  Google Scholar 

  43. T. Schenkel, A. V. Hamza, A. V. Barnes, and D. H. Schneider, Phys. Rev. A 56, 1701 (1997).

    Article  ADS  Google Scholar 

  44. M. Behar, P. F. P. Fichter, P. L. Grande, and F. C. Zawislak, Mater. Sci. Eng. R 15, 1 (1995).

    Article  Google Scholar 

  45. F. Aumayr, P. Varga, and H. P. Winter, Int. J. Mass Spectrom. 192, 415 (1999).

    Article  Google Scholar 

  46. B. L. Oksengendler, F. G. Djurabekova, S. E. Maksimov, N. Yu. Turaev, and N. N. Turaeva, Vacuum 105, 70 (2014).

    Article  ADS  Google Scholar 

  47. S. Meyer and A. Wucher, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 646 (2009).

    Google Scholar 

  48. R. Gonzalez-Arrabal, N. Gordillo, G. Garcia, D. O. Boerma, and V. A. Khodyrev, Nucl. Instrum. Methods Phys. Res., Sect. B 249, 65 (2006).

    Google Scholar 

  49. V. A. Khodyrev, V. S. Kulikauskas, and C. Yang, Nucl. Instrum. Methods Phys. Res., Sect. B 195, 259 (2002).

    Google Scholar 

  50. P. Varga, T. Neidhart, M. Sporn, G. Libiseller, M. Schmid, F. Aumayr, and H. P. Winter, Phys. Scr. T 73, 307 (1997).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the personnel of the FAMA accelerating complex for experiments on irradiation with multiply charged ions.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-32-00833mol_a. M. Erich and S. Petrovic note the support of this work by the Ministry of Education, Science, and Technological Development of Serbia in the scope of the project “Physics and Chemistry of Ion Beams” no. III 45006, in particular, when performing works using the FAMA accelerating complex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Balakshin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakshin, Y.V., Kozhemiako, A.V., Petrovic, S. et al. Influence of the Charge State of Xenon Ions on the Depth Distribution Profile Upon Implantation into Silicon. Semiconductors 53, 1011–1017 (2019). https://doi.org/10.1134/S1063782619080062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619080062

Keywords:

Navigation