Skip to main content
Log in

Spatial relationships of multivariate data

  • Articles
  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

Spatial factor analysis (SFA) is a multivariate method that determines linear combinations of variables with maximum autocorrelation at a given lag. This is achieved by deriving estimates of auto-/cross-correlations of the variables and calculating the corresponding eigenvectors of the covariance quotient matrix. A two-point spatial factor analysis model derives factors by the formation of transition matrixU comparing auto-/cross-correlations at lag “0,”R 0, with those at a specified lag “d,”R d, expressed asU d=R −10 Rd. The matrixU d can be decomposed into its spectral components which represent the spatial factors. The technique has been extended to include three points of reference. Spatial factors can be derived from the relationship:

$$\left[ {\begin{array}{*{20}c} {U_{d1} } \\ {} \\ {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \\ {U_{d2} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {R_0 R_{d3} } \\ {} \\ {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \\ {R_{d3} R_0 } \\ \end{array} } \right]^{ - 1} \left[ {\begin{array}{*{20}c} {R_{d1} } \\ {} \\ {\begin{array}{*{20}c} {} \\ {} \\ \end{array} } \\ {R_{d2} } \\ \end{array} } \right]$$

where the factors ofU d1 andU d2 predict the relationships of the variables over three lag distances and orientations from matricesR d1,R d2, andR d3. Estimates of auto-/cross-correlation can be achieved using irregularly spaced or gridded data from experimental correlograms or function estimates determined from the experimental correlograms. The technique has applications in studies where several variables have different spatial ranges or zones of influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agterberg, F. P., 1966, The Use of Multivariate Markov Schemes in Petrology: J. Geol., v. 79, p. 764–785.

    Google Scholar 

  • Agterberg, F. P., 1970, Autocorrelation Functions in Geology,in D. F. Merriam (Ed.), Geostatistics: Plenum, New York, p. 113–142.

    Google Scholar 

  • Agterberg, F. P., 1974, Geomathematics: Elsevier, Amsterdam, 596 p.

    Google Scholar 

  • Aitchison, J., 1986, The Statistical Analysis of Compositional Data: Chapman and Hall, New York, 416 p.

    Google Scholar 

  • Chung, C. F., and Fabbri, A. G., in press, Two Approaches to Parsimony of Multi-channel Remote Sensed Data,in G. Hill (Ed.), Advanced Data Integration in Mineral and Energy Resources Studies: USGS Bulletin.

  • Colvine, A. C., et al., 1988, Archean Lode Gold Deposits in Ontario: Ontario Geological Survey, Miscellaneous Paper 139, 136 p.

  • Grunsky, E. C., 1986, Recognition of Alteration in Volcanic Rocks Using Statistical Analysis of Lithogeochemical Data: J. Geochem. Expl., v. 25, p. 157–183.

    Google Scholar 

  • Grunsky, E. C., 1988, Multivariate and Spatial Analysis of Lithogeochemical Data from Metavolcanics with Zones of Alteration and Mineralization in Ben Nevis Township, Ontario: Unpublished Ph.D. thesis, University of Ottawa.

  • Grunsky, E. C., 1989, Spatial Factor Analysis: A Technique to Assess the Spatial Relationships of Multivariate Data,in F. P. Agterberg and G. F. Bonham-Carter (Eds.), Statistical Applications in the Earth Sciences: Geological Survey of Canada Paper 89–9, p. 329–347.

  • Grunsky, E. C., and Agterberg, F. P., 1988, Spatial and Multivariate Analysis of Geochemical Data from Metavolcanic Rocks in the Ben Nevis Area, Ontario: Math. Geol., v. 20, n. 7, p. 825–861.

    Google Scholar 

  • Grunsky, E. C., and Agterberg, F. P., 1989, The Application of Spatial Factor Analysis to Unconditional Simulations with Implications for Mineral Exploration,in Applications of Computers and Operations Research in the Mineral Industry (APCOM), Chap. 20: 1989 Proceedings, p. 194–208.

  • Grunsky, E. C., and Agterberg, F. P., 1991a, FUNCORR: A FORTRAN 77 Program for Computing Multivariate Spatial Autocorrelation: Comput. Geosci., v. 17, n. 1, p. 115–131.

    Google Scholar 

  • Grunsky, E. C., and Agterberg, F. P., 1991b, SPFAC: A Fortran 77 Program for Spatial Multivariate Analysis: Comput. Geosci., v. 17, n. 1, p. 133–160.

    Google Scholar 

  • Haining, R., 1987, Trend Surface Models with Regional and Local Scales of Variation with an Application to Aerial Survey Data: Technometrics, v. 29, n. 4, p. 461–469.

    Google Scholar 

  • Journel, A. G., and Huijbregts, C. J., 1978, Mining Geostatistics: Academic Press, London, 6 p.

    Google Scholar 

  • LeMaitre, R. W., 1982, Numerical Petrology, Statistical Interpretation of Geochemical Data: Elsevier, New York, 281 p.

    Google Scholar 

  • Myers, D. E., 1982, Matrix Formulation of Co-kriging: Math. Geol., v. 14, p. 249–257.

    Google Scholar 

  • Myers, D. E., 1988, Some New Aspects of Multivariate Analysis,in A. G. Fabbri, C. F. Chung, and R. Sinding-Larsen (Eds.), Statistical Treatments for Estimation of Mineral and Energy Resources; Proc. NATO Conference Held at Il Ciocco, Italy, July 1986, Reidel, Dordrecht, p. 669–687.

    Google Scholar 

  • Pawlowsky, V., 1989, Co-kriging of Regionalized Compositions: Math. Geol., v. 21, p. 512–521.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1986, Numerical Recipes, The Art of Scientific Computing: Cambridge University Press, 818 p.

  • Quenouille, M. H., 1957, The Analysis of Multiple Time-Series: Hafner, New York, 105 p.

    Google Scholar 

  • Royer, J.-J., 1988, Geochemical Data Analysis,in A. G. Fabbri, C. F. Chung, and R. Sinding-Larsen (Eds.), Statistical Treatments for Estimation of Mineral and Energy Resources: Proc. NATO Conference Held at Il Ciocco, Italy, July 1986, Reidel, Dordrecht, p. 89–112.

    Google Scholar 

  • Shepard, D., 1968, A Two-Dimensional Interpolation Function for Irregularly Spaced Data: Proceedings of the 23rd National Conference, Association for Computing Machinery, Brandon, Princeton, N.J., p. 517–524.

    Google Scholar 

  • Switzer, P., and Green, A. A., 1984, Min/Max Autocorrelation Factors for Multivariate Spatial Imagery: Tech. Report No. 6, April 1984, Department of Statistics, Standard University, 14 p.

  • Wackernagel, H., 1988, Geostatistical Techniques for Interpreting Multivariate Spatial Information,in A. G. Fabbri, C. F. Chung, and R. Sinding-Larsen (eds.), Statistical Treatment for Estimation of Mineral and Energy Resources: Proc. NATO Conference Held at Il Ciocco, Italy, July 1986, Reidel, Dordrecht, p. 393–349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grunsky, E.C., Agterberg, F.P. Spatial relationships of multivariate data. Math Geol 24, 731–758 (1992). https://doi.org/10.1007/BF00894238

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00894238

Key words

Navigation